A Neuromorphic Tactile System for Reliable Braille Reading in Noisy Environments

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Xingchen Xu;Nathan F. Lepora;Benjamin Ward-Cherrier
{"title":"A Neuromorphic Tactile System for Reliable Braille Reading in Noisy Environments","authors":"Xingchen Xu;Nathan F. Lepora;Benjamin Ward-Cherrier","doi":"10.1109/LRA.2025.3558707","DOIUrl":null,"url":null,"abstract":"Neuromorphic sensors are a promising technology in artificial touch due to their low latency and low computational and power requirements, particularly when paired with spiking neural networks (SNNs). Here, we explore the ability of these systems to adapt to and generalize across varying sources of uncertainty in tactile tasks. We choose Braille reading as an application task and collect event-based data for 27 braille characters with a neuromorphic tactile sensor (NeuroTac) under varying conditions of tapping speed, center position and indentation depth using a 6-DOF robot arm. We initially analyze the effect of spatial location and speed on classification performance with spiking convolutional neural networks (SCNNs). We then show that SCNNs are able to generalize across each dimension. The final general SCNN model reaches 95.33% accuracy with uncertainty in all 4 dimensions. This research demonstrates the noise degradation performance of SCNNs in a tactile task, and outlines the potential of a single SCNN to generalize across several dimensions of uncertainty.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"5225-5232"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10955194/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic sensors are a promising technology in artificial touch due to their low latency and low computational and power requirements, particularly when paired with spiking neural networks (SNNs). Here, we explore the ability of these systems to adapt to and generalize across varying sources of uncertainty in tactile tasks. We choose Braille reading as an application task and collect event-based data for 27 braille characters with a neuromorphic tactile sensor (NeuroTac) under varying conditions of tapping speed, center position and indentation depth using a 6-DOF robot arm. We initially analyze the effect of spatial location and speed on classification performance with spiking convolutional neural networks (SCNNs). We then show that SCNNs are able to generalize across each dimension. The final general SCNN model reaches 95.33% accuracy with uncertainty in all 4 dimensions. This research demonstrates the noise degradation performance of SCNNs in a tactile task, and outlines the potential of a single SCNN to generalize across several dimensions of uncertainty.
嘈杂环境下可靠盲文阅读的神经形态触觉系统
神经形态传感器由于其低延迟、低计算和低功耗要求,特别是当与峰值神经网络(snn)配对时,在人工触觉中是一种很有前途的技术。在这里,我们探索这些系统适应和概括触觉任务中各种不确定性来源的能力。本文以盲文阅读为应用任务,采用神经形态触觉传感器(NeuroTac),利用六自由度机械臂,在不同的点触速度、中心位置和压痕深度条件下,对27个盲文字符进行了基于事件的数据采集。我们初步分析了空间位置和速度对尖峰卷积神经网络(SCNNs)分类性能的影响。然后,我们证明了scnn能够在每个维度上进行泛化。最终的通用SCNN模型在所有4个维度上都具有不确定性,准确率达到95.33%。本研究展示了SCNN在触觉任务中的噪声降解性能,并概述了单个SCNN在多个不确定性维度上的泛化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信