A Novel One-Versus-All Approach for Multiclass Classification in TinyML Systems

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Tobiasz Puślecki;Krzysztof Walkowiak
{"title":"A Novel One-Versus-All Approach for Multiclass Classification in TinyML Systems","authors":"Tobiasz Puślecki;Krzysztof Walkowiak","doi":"10.1109/LES.2024.3482002","DOIUrl":null,"url":null,"abstract":"The recent progress in TinyML technologies triggers the need to address the challenge of balancing inference time and recognition quality. TinyML systems are defined by specific constraints in computation, memory and energy. These constraints emphasize the need for specialized optimization techniques when implementing machine learning (ML) applications on such platforms. While deep neural networks are popular in TinyML systems, exploring simple classifiers is also worthwhile. In this work, we consider a modification of the one-versus-all (OVA) approach in a multiclass task of computer vision in TinyML systems. This modification, named thresholded OVA (TOVA), enables control over classification accuracy, influencing both latency and energy consumption per inference. By testing various combinations of hyperparameters, we simulate the performance of a real device using metrics specific to TinyML systems. The results show that the proposed method significantly saves energy and speeds up computation, at the cost of slightly lower-overall accuracy of the TinyML system.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"17 2","pages":"71-74"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10720189/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The recent progress in TinyML technologies triggers the need to address the challenge of balancing inference time and recognition quality. TinyML systems are defined by specific constraints in computation, memory and energy. These constraints emphasize the need for specialized optimization techniques when implementing machine learning (ML) applications on such platforms. While deep neural networks are popular in TinyML systems, exploring simple classifiers is also worthwhile. In this work, we consider a modification of the one-versus-all (OVA) approach in a multiclass task of computer vision in TinyML systems. This modification, named thresholded OVA (TOVA), enables control over classification accuracy, influencing both latency and energy consumption per inference. By testing various combinations of hyperparameters, we simulate the performance of a real device using metrics specific to TinyML systems. The results show that the proposed method significantly saves energy and speeds up computation, at the cost of slightly lower-overall accuracy of the TinyML system.
TinyML系统中多类分类的一种单对全新方法
TinyML技术的最新进展引发了解决平衡推理时间和识别质量的挑战的需要。TinyML系统是由计算、内存和能量方面的特定约束定义的。这些限制强调了在这些平台上实现机器学习(ML)应用程序时需要专门的优化技术。虽然深度神经网络在TinyML系统中很流行,但探索简单的分类器也是值得的。在这项工作中,我们考虑了在TinyML系统的多类计算机视觉任务中对一对全(OVA)方法的修改。这种修改被称为阈值OVA (TOVA),可以控制分类准确性,从而影响每次推理的延迟和能耗。通过测试各种超参数组合,我们使用特定于TinyML系统的指标模拟真实设备的性能。结果表明,该方法显著节省了能量,加快了计算速度,但代价是TinyML系统的整体精度略低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信