Haitao Yang , Zhaowei Liu , Dong Yang , Lihong Wang
{"title":"Parallel graph neural architecture search optimization with incomplete features","authors":"Haitao Yang , Zhaowei Liu , Dong Yang , Lihong Wang","doi":"10.1016/j.asoc.2025.113068","DOIUrl":null,"url":null,"abstract":"<div><div>Graph neural networks (GNNs) have shown remarkable success in many fields. However, the results of different model architectures for different scenarios can be very different. Designing effective neural architectures requires a great deal of specialized knowledge, which limits the application of GNNs models. In recent years, graph neural architecture search (GNAS) has attracted widespread attention. GNAS selects the GNNs structure in predefined search space using a suitable search algorithm. The search direction is constrained based on the evaluation made by the estimation strategy. Traditional GNAS methods suffer from long search times, difficulty in parameter selection, and high sensitivity to data quality. When feature information is missing, the candidate architectures explored during the search process cannot obtain complete feature information, which significantly reduces the accuracy of GNAS. To tackle these challenges, we propose a novel optimization framework for parallel graph neural architecture search, named AutoPGO. In AutoPGO, we complement the features based on a feature propagation algorithm generated by minimizing the Dirichlet energy function, improve the search algorithm using the mutation decay strategy and complete the optimization of the parameters using the Bayesian optimization method. Experimental results show that AutoPGO has good performance and some degree of robustness.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"176 ","pages":"Article 113068"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625003795","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Graph neural networks (GNNs) have shown remarkable success in many fields. However, the results of different model architectures for different scenarios can be very different. Designing effective neural architectures requires a great deal of specialized knowledge, which limits the application of GNNs models. In recent years, graph neural architecture search (GNAS) has attracted widespread attention. GNAS selects the GNNs structure in predefined search space using a suitable search algorithm. The search direction is constrained based on the evaluation made by the estimation strategy. Traditional GNAS methods suffer from long search times, difficulty in parameter selection, and high sensitivity to data quality. When feature information is missing, the candidate architectures explored during the search process cannot obtain complete feature information, which significantly reduces the accuracy of GNAS. To tackle these challenges, we propose a novel optimization framework for parallel graph neural architecture search, named AutoPGO. In AutoPGO, we complement the features based on a feature propagation algorithm generated by minimizing the Dirichlet energy function, improve the search algorithm using the mutation decay strategy and complete the optimization of the parameters using the Bayesian optimization method. Experimental results show that AutoPGO has good performance and some degree of robustness.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.