Thomas Grünwald, Luise Wanner, Uwe Eichelmann, Markus Hehn, Uta Moderow, Heiko Prasse, Ronald Queck, Christian Bernhofer, Matthias Mauder
{"title":"Carbon fluxes controlled by land management and disturbances at a cluster of long-term ecosystem monitoring sites in Central Europe","authors":"Thomas Grünwald, Luise Wanner, Uwe Eichelmann, Markus Hehn, Uta Moderow, Heiko Prasse, Ronald Queck, Christian Bernhofer, Matthias Mauder","doi":"10.1016/j.agrformet.2025.110533","DOIUrl":null,"url":null,"abstract":"<div><div>Terrestrial ecosystems play a crucial role in carbon sequestration and provide vital ecosystem services such as food, energy, and raw materials. Climate change, through rising temperatures, altered precipitation patterns, and extreme events, threatens the carbon sink potential of these ecosystems, with forests and grasslands particularly at risk. Long-term data from flux tower networks offer valuable insights into how different ecosystems respond to climate change and management interventions, helping to develop strategies to mitigate greenhouse gas emissions and maintain ecosystem resilience. In this study, we present such data from a <10 km cluster of long-term FLUXNET/ICOS sites in Central Europe, comprising an old spruce forest (DE-Tha), a young oak plantation after a cleared windthrow (DE-Hzd), a permanent grassland site (DE-Gri), and an agricultural site with a crop rotation typical for this region (DE-Kli). By analysing decades of data from these eddy covariance measurement sites, the research highlights the influence of drought, management, and land cover changes on CO<sub>2</sub> and H<sub>2</sub>O fluxes. The interannual variability of evapotranspiration depends less on land use than the CO<sub>2</sub> exchange. Our findings show that intact forests can act as larger carbon sinks than previously estimated. DE-Tha is a consistent carbon sink, with thinning helping to maintain the CO<sub>2</sub> sequestration at a stable level of 350 gC <em>m</em><sup>−2</sup> <em>a</em><sup>−1</sup>. In contrast, disturbances like clear cutting or windthrow can cause ecosystems to become carbon sources for several years, with recovery delayed due to soil carbon losses from increased respiration (DE-Hzd). While DE-Hzd was resilient to drought, the carbon uptake of DE-Tha was significantly reduced by around 50 % during dry years compared to wet years. Furthermore, sustainable management maintains carbon sequestration and land-use practices, such as crop selection, significantly impact net ecosystem productivity. These insights are valuable for optimizing land management strategies to enhance carbon sinks in similar regions.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"369 ","pages":"Article 110533"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325001534","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Terrestrial ecosystems play a crucial role in carbon sequestration and provide vital ecosystem services such as food, energy, and raw materials. Climate change, through rising temperatures, altered precipitation patterns, and extreme events, threatens the carbon sink potential of these ecosystems, with forests and grasslands particularly at risk. Long-term data from flux tower networks offer valuable insights into how different ecosystems respond to climate change and management interventions, helping to develop strategies to mitigate greenhouse gas emissions and maintain ecosystem resilience. In this study, we present such data from a <10 km cluster of long-term FLUXNET/ICOS sites in Central Europe, comprising an old spruce forest (DE-Tha), a young oak plantation after a cleared windthrow (DE-Hzd), a permanent grassland site (DE-Gri), and an agricultural site with a crop rotation typical for this region (DE-Kli). By analysing decades of data from these eddy covariance measurement sites, the research highlights the influence of drought, management, and land cover changes on CO2 and H2O fluxes. The interannual variability of evapotranspiration depends less on land use than the CO2 exchange. Our findings show that intact forests can act as larger carbon sinks than previously estimated. DE-Tha is a consistent carbon sink, with thinning helping to maintain the CO2 sequestration at a stable level of 350 gC m−2a−1. In contrast, disturbances like clear cutting or windthrow can cause ecosystems to become carbon sources for several years, with recovery delayed due to soil carbon losses from increased respiration (DE-Hzd). While DE-Hzd was resilient to drought, the carbon uptake of DE-Tha was significantly reduced by around 50 % during dry years compared to wet years. Furthermore, sustainable management maintains carbon sequestration and land-use practices, such as crop selection, significantly impact net ecosystem productivity. These insights are valuable for optimizing land management strategies to enhance carbon sinks in similar regions.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.