Linear inviscid damping for monotonic shear flow in unbounded domain

IF 2.4 2区 数学 Q1 MATHEMATICS
Siqi Ren
{"title":"Linear inviscid damping for monotonic shear flow in unbounded domain","authors":"Siqi Ren","doi":"10.1016/j.jde.2025.113287","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the 2-D incompressible Euler equation in unbounded domain <span><math><mi>T</mi><mo>×</mo><mi>R</mi></math></span>, linearized around a class of monotonic shear flow whose derivatives degenerate with same exponentially rate at infinity. We prove the linear inviscid damping with exponential weighted Sobolev initial data.</div><div>Our proof includes four parts: limiting absorption principle for Rayleigh equation, space-time estimate, vector field method and semigroup estimate. To seize the degeneracy of the derivatives of the flow, all of our estimates are weighted with the widest range. To handle the lack of compactness for the non-local term, we use blow-up analysis in the proof of limiting absorption principle.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"434 ","pages":"Article 113287"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003146","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the 2-D incompressible Euler equation in unbounded domain T×R, linearized around a class of monotonic shear flow whose derivatives degenerate with same exponentially rate at infinity. We prove the linear inviscid damping with exponential weighted Sobolev initial data.
Our proof includes four parts: limiting absorption principle for Rayleigh equation, space-time estimate, vector field method and semigroup estimate. To seize the degeneracy of the derivatives of the flow, all of our estimates are weighted with the widest range. To handle the lack of compactness for the non-local term, we use blow-up analysis in the proof of limiting absorption principle.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信