The non-homogeneous Dirichlet problem for the p(x)-Laplacian with unbounded p(x) on a smooth domain

IF 2.4 2区 数学 Q1 MATHEMATICS
Mohamed A. Khamsi , Jan Lang , Osvaldo Méndez , Aleš Nekvinda
{"title":"The non-homogeneous Dirichlet problem for the p(x)-Laplacian with unbounded p(x) on a smooth domain","authors":"Mohamed A. Khamsi ,&nbsp;Jan Lang ,&nbsp;Osvaldo Méndez ,&nbsp;Aleš Nekvinda","doi":"10.1016/j.jde.2025.113316","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines the solvability of the Dirichlet problem for the variable exponent <em>p</em>-Laplacian in the case of unbounded <span><math><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. For a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with a smooth boundary and <em>p</em> satisfying <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>=</mo><munder><mrow><mi>essinf</mi></mrow><mrow><mi>Ω</mi></mrow></munder><mspace></mspace><mi>p</mi><mo>&gt;</mo><mi>n</mi></math></span> and <em>φ</em> in the Sobolev space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, we investigate the problem<span><span><span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>Ω</mi></mrow></msub><mo>=</mo><mi>φ</mi><mo>.</mo></math></span></span></span> We introduce the space <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, which is the natural solution space for the minimization of the Dirichlet integral given the unbounded nature of <span><math><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. Our main results establish the existence and uniqueness of solutions within this space. Since <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is not defined via a TVS topology, the paper includes the description of the necessary modular topological framework and discusses Clarkson-type inequalities for unbounded variable exponents, which are interesting in their own right.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"434 ","pages":"Article 113316"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003432","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the solvability of the Dirichlet problem for the variable exponent p-Laplacian in the case of unbounded p(x). For a bounded domain ΩRn with a smooth boundary and p satisfying p=essinfΩp>n and φ in the Sobolev space W1,p(x)(Ω), we investigate the problemΔp(u)=0inΩ,u|Ω=φ. We introduce the space V01,p(Ω), which is the natural solution space for the minimization of the Dirichlet integral given the unbounded nature of p(x). Our main results establish the existence and uniqueness of solutions within this space. Since V01,p(Ω) is not defined via a TVS topology, the paper includes the description of the necessary modular topological framework and discusses Clarkson-type inequalities for unbounded variable exponents, which are interesting in their own right.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信