Reaction zone evolution and remediation efficacy evaluation of in-situ biogeochemical transformation of emulsified vegetable oil-FeSO4 enhanced tetrachloroethylene-contaminated aquifers
IF 4.1 2区 环境科学与生态学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Reaction zone evolution and remediation efficacy evaluation of in-situ biogeochemical transformation of emulsified vegetable oil-FeSO4 enhanced tetrachloroethylene-contaminated aquifers","authors":"Chen Sun , Jun Dong","doi":"10.1016/j.ibiod.2025.106100","DOIUrl":null,"url":null,"abstract":"<div><div>Enhanced in-situ biogeochemical transformation (ISBGT) has been proven effective in promoting the abiotic β-elimination of chlorinated solvents. However, the mechanisms underlying reaction zone evolution, remediation efficiency, and long-term permeability changes during the remediation process remain poorly understood. This study employed emulsified vegetable oil (EVO) and FeSO<sub>4</sub> as amendments to establish an in-situ reaction zone in a simulated column system. The reaction zone evolution was systematically analyzed, and the remediation efficiency and permeability variations in a PCE-contaminated aquifer were assessed. The results showed that after a single injection of EVO-FeSO<sub>4</sub>, the reaction zone evolved through three distinct stages, including emulsified oil decomposition, microbial reduction, and β-elimination. The formation and aging mechanisms of the sulfur-iron mineral biogeobattery were also clarified. During the 300-day experimental period, the system achieved a PCE removal efficiency of 93.3%, with abiotic degradation processes contributing 96.36% of the total removal. This study provides important insights for the further development and practical application of ISBGT technology.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"202 ","pages":"Article 106100"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830525001040","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enhanced in-situ biogeochemical transformation (ISBGT) has been proven effective in promoting the abiotic β-elimination of chlorinated solvents. However, the mechanisms underlying reaction zone evolution, remediation efficiency, and long-term permeability changes during the remediation process remain poorly understood. This study employed emulsified vegetable oil (EVO) and FeSO4 as amendments to establish an in-situ reaction zone in a simulated column system. The reaction zone evolution was systematically analyzed, and the remediation efficiency and permeability variations in a PCE-contaminated aquifer were assessed. The results showed that after a single injection of EVO-FeSO4, the reaction zone evolved through three distinct stages, including emulsified oil decomposition, microbial reduction, and β-elimination. The formation and aging mechanisms of the sulfur-iron mineral biogeobattery were also clarified. During the 300-day experimental period, the system achieved a PCE removal efficiency of 93.3%, with abiotic degradation processes contributing 96.36% of the total removal. This study provides important insights for the further development and practical application of ISBGT technology.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.