Haitham S. Mohammed , Dalia H. Ahmed , Yasser A. Khadrawy , Noha G. Madian
{"title":"Neuroprotection in pentylenetetrazol kindling rat model: A synergistic approach with eugenol and photobiomodulation","authors":"Haitham S. Mohammed , Dalia H. Ahmed , Yasser A. Khadrawy , Noha G. Madian","doi":"10.1016/j.brainres.2025.149645","DOIUrl":null,"url":null,"abstract":"<div><div>Epilepsy is a complex neurological disorder characterized by recurrent seizures, significantly impacting patient health and quality of life. This study explores the neuroprotective effects of combining Eugenol (EUG), a natural bioactive compound administered at 100 mg/kg, with photobiomodulation (PBM), a non-invasive low-level laser therapy at 830 nm wavelength and 100 mW power, in a pentylenetetrazole (PTZ) kindling rat model of epilepsy. Fifty-nine adult male Wistar rats were assigned to five experimental groups: Control, PTZ (epilepsy model), PBM, EUG, and EUG + PBM. Seizure severity was assessed using a modified Racine scale following each PTZ injection. The study also evaluated cortical and hippocampal levels of brain-derived neurotrophic factor (BDNF), oxidative stress markers (MDA, NO, and GSH), activities of acetylcholinesterase (AChE) and Na + K + -ATPase, and monoamine neurotransmitters (DA, 5-HT, and NE). The results demonstrated that EUG and PBM, both individually and combined, significantly reduced seizure severity, mitigated oxidative stress, restored enzyme activities, and elevated BDNF levels. The combined treatment yielded superior neuroprotective effects compared to individual interventions, emphasizing its potential as a promising therapeutic strategy for epilepsy management.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1858 ","pages":"Article 149645"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899325002045","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy is a complex neurological disorder characterized by recurrent seizures, significantly impacting patient health and quality of life. This study explores the neuroprotective effects of combining Eugenol (EUG), a natural bioactive compound administered at 100 mg/kg, with photobiomodulation (PBM), a non-invasive low-level laser therapy at 830 nm wavelength and 100 mW power, in a pentylenetetrazole (PTZ) kindling rat model of epilepsy. Fifty-nine adult male Wistar rats were assigned to five experimental groups: Control, PTZ (epilepsy model), PBM, EUG, and EUG + PBM. Seizure severity was assessed using a modified Racine scale following each PTZ injection. The study also evaluated cortical and hippocampal levels of brain-derived neurotrophic factor (BDNF), oxidative stress markers (MDA, NO, and GSH), activities of acetylcholinesterase (AChE) and Na + K + -ATPase, and monoamine neurotransmitters (DA, 5-HT, and NE). The results demonstrated that EUG and PBM, both individually and combined, significantly reduced seizure severity, mitigated oxidative stress, restored enzyme activities, and elevated BDNF levels. The combined treatment yielded superior neuroprotective effects compared to individual interventions, emphasizing its potential as a promising therapeutic strategy for epilepsy management.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.