Global existence and uniqueness of strong solutions to the 2D nonhomogeneous primitive equations with density-dependent viscosity

IF 2.4 2区 数学 Q1 MATHEMATICS
Quansen Jiu , Lin Ma , Fengchao Wang
{"title":"Global existence and uniqueness of strong solutions to the 2D nonhomogeneous primitive equations with density-dependent viscosity","authors":"Quansen Jiu ,&nbsp;Lin Ma ,&nbsp;Fengchao Wang","doi":"10.1016/j.jde.2025.113321","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with an initial-boundary value problem of the two-dimensional inhomogeneous primitive equations with density-dependent viscosity. The global well-posedness of strong solutions is established, provided the initial horizontal velocity is suitably small, that is, <span><math><msub><mrow><mo>‖</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>≤</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> for suitably small <span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>. The initial data may contain vacuum. The proof is based on the local well-posedness and the blow-up criterion proved in <span><span>[15]</span></span>, which states that if <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is the maximal existence time of the local strong solutions <span><math><mo>(</mo><mi>ρ</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>&lt;</mo><mo>∞</mo></math></span>, then<span><span><span><math><munder><mi>sup</mi><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>&lt;</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></munder><mo>⁡</mo><mo>(</mo><msub><mrow><mo>‖</mo><mi>∇</mi><mi>ρ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><msup><mrow><mi>∇</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>ρ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mi>∇</mi><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>)</mo><mo>=</mo><mo>∞</mo><mo>.</mo></math></span></span></span> To complete the proof, it is required to make an estimate on a key term <span><math><msub><mrow><mo>‖</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>Ω</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msub></math></span>. We prove that it is bounded and could be as small as desired under certain smallness conditions, by making use of the regularity result of hydrostatic Stokes equations and some careful time weighted estimates.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"436 ","pages":"Article 113321"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003481","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with an initial-boundary value problem of the two-dimensional inhomogeneous primitive equations with density-dependent viscosity. The global well-posedness of strong solutions is established, provided the initial horizontal velocity is suitably small, that is, u0L2η0 for suitably small η0>0. The initial data may contain vacuum. The proof is based on the local well-posedness and the blow-up criterion proved in [15], which states that if T is the maximal existence time of the local strong solutions (ρ,u,w,P) and T<, thensup0t<T(ρ(t)L+2ρ(t)L2+u(t)L2)=. To complete the proof, it is required to make an estimate on a key term utLt1LΩ2. We prove that it is bounded and could be as small as desired under certain smallness conditions, by making use of the regularity result of hydrostatic Stokes equations and some careful time weighted estimates.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信