{"title":"Global existence and uniqueness of strong solutions to the 2D nonhomogeneous primitive equations with density-dependent viscosity","authors":"Quansen Jiu , Lin Ma , Fengchao Wang","doi":"10.1016/j.jde.2025.113321","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with an initial-boundary value problem of the two-dimensional inhomogeneous primitive equations with density-dependent viscosity. The global well-posedness of strong solutions is established, provided the initial horizontal velocity is suitably small, that is, <span><math><msub><mrow><mo>‖</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>≤</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> for suitably small <span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></math></span>. The initial data may contain vacuum. The proof is based on the local well-posedness and the blow-up criterion proved in <span><span>[15]</span></span>, which states that if <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is the maximal existence time of the local strong solutions <span><math><mo>(</mo><mi>ρ</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo><</mo><mo>∞</mo></math></span>, then<span><span><span><math><munder><mi>sup</mi><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo><</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></munder><mo></mo><mo>(</mo><msub><mrow><mo>‖</mo><mi>∇</mi><mi>ρ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><msup><mrow><mi>∇</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>ρ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mi>∇</mi><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>)</mo><mo>=</mo><mo>∞</mo><mo>.</mo></math></span></span></span> To complete the proof, it is required to make an estimate on a key term <span><math><msub><mrow><mo>‖</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>Ω</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msub></math></span>. We prove that it is bounded and could be as small as desired under certain smallness conditions, by making use of the regularity result of hydrostatic Stokes equations and some careful time weighted estimates.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"436 ","pages":"Article 113321"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003481","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with an initial-boundary value problem of the two-dimensional inhomogeneous primitive equations with density-dependent viscosity. The global well-posedness of strong solutions is established, provided the initial horizontal velocity is suitably small, that is, for suitably small . The initial data may contain vacuum. The proof is based on the local well-posedness and the blow-up criterion proved in [15], which states that if is the maximal existence time of the local strong solutions and , then To complete the proof, it is required to make an estimate on a key term . We prove that it is bounded and could be as small as desired under certain smallness conditions, by making use of the regularity result of hydrostatic Stokes equations and some careful time weighted estimates.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics