Modeling economic loss associated with fishing vessel accidents: A Bayesian random-parameter generalized beta of the second kind model with heterogeneity in means
IF 12.5 1区 工程技术Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Yun Ye , Pengjun Zheng , Qianfang Wang , S.C. Wong , Pengpeng Xu
{"title":"Modeling economic loss associated with fishing vessel accidents: A Bayesian random-parameter generalized beta of the second kind model with heterogeneity in means","authors":"Yun Ye , Pengjun Zheng , Qianfang Wang , S.C. Wong , Pengpeng Xu","doi":"10.1016/j.amar.2025.100384","DOIUrl":null,"url":null,"abstract":"<div><div>The distribution of economic loss associated with vessel accidents typically exhibits non-negative, continuous, positively skewed, and heavy-tailed characteristics. Another challenge in analyzing fishing vessel accidents is the absence of relevant factors. Ignoring such heterogeneity caused by unobserved factors potentially leads to inaccurate inferences. In the present study, a novel Bayesian random-parameter generalized beta of the second kind (GB2) model with possible heterogeneity in means and variances was developed. The flexible GB2 distribution was harnessed to model the skewed and heavy-tailed response variable, while the random parameters were specified to capture the unobserved heterogeneity. The proposed method was validated using an insurance claim dataset with 3448 fishing vessel accidents within Ningbo waters during 2018–2022. The proposed model successfully identified significant influential factors, including fixed parameters, random parameters, and covariates influencing the means of the random parameters. Specifically, offshore and inevitable accidents, fishing transport vessels, double-trawl vessels with mechanical failures, wide-hulled vessels, and favorable sea conditions were associated with greater economic loss. Special attention should also be paid to nighttime accidents involving steel-hulled fishing transport vessels, as this accident type emerged to result in greater loss during the pandemic lockdown period. Our approach can accommodate the abnormality, skewness, and heavy-tail of vessel accident loss data, adjust for the bias introduced by unobserved factors, and uncover the interactive relationship among covariates. Targeted countermeasures were proposed to mitigate economic loss resulting from fishing vessel accidents.</div></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"46 ","pages":"Article 100384"},"PeriodicalIF":12.5000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665725000156","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
The distribution of economic loss associated with vessel accidents typically exhibits non-negative, continuous, positively skewed, and heavy-tailed characteristics. Another challenge in analyzing fishing vessel accidents is the absence of relevant factors. Ignoring such heterogeneity caused by unobserved factors potentially leads to inaccurate inferences. In the present study, a novel Bayesian random-parameter generalized beta of the second kind (GB2) model with possible heterogeneity in means and variances was developed. The flexible GB2 distribution was harnessed to model the skewed and heavy-tailed response variable, while the random parameters were specified to capture the unobserved heterogeneity. The proposed method was validated using an insurance claim dataset with 3448 fishing vessel accidents within Ningbo waters during 2018–2022. The proposed model successfully identified significant influential factors, including fixed parameters, random parameters, and covariates influencing the means of the random parameters. Specifically, offshore and inevitable accidents, fishing transport vessels, double-trawl vessels with mechanical failures, wide-hulled vessels, and favorable sea conditions were associated with greater economic loss. Special attention should also be paid to nighttime accidents involving steel-hulled fishing transport vessels, as this accident type emerged to result in greater loss during the pandemic lockdown period. Our approach can accommodate the abnormality, skewness, and heavy-tail of vessel accident loss data, adjust for the bias introduced by unobserved factors, and uncover the interactive relationship among covariates. Targeted countermeasures were proposed to mitigate economic loss resulting from fishing vessel accidents.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.