Effect of hemicellulose and its-derived products on the recycling and efficiency of biomass fractionation using lactic acid/choline chloride (DES)

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Qing Zhang , Jiao Meng , Qingwen Tian , Lili Zhang , Jing Shen , Yonghao Ni , Zhiguo Wang
{"title":"Effect of hemicellulose and its-derived products on the recycling and efficiency of biomass fractionation using lactic acid/choline chloride (DES)","authors":"Qing Zhang ,&nbsp;Jiao Meng ,&nbsp;Qingwen Tian ,&nbsp;Lili Zhang ,&nbsp;Jing Shen ,&nbsp;Yonghao Ni ,&nbsp;Zhiguo Wang","doi":"10.1016/j.biortech.2025.132545","DOIUrl":null,"url":null,"abstract":"<div><div>The recyclability of lactic acid/choline chloride deep eutectic solvent (DES) in lignocellulose fractionation remains challenging. This study demonstrates that DES reuse reduces delignification efficiency, with a residual lignin content of 9.64% after three cycles, resulting in incomplete fiber separation. The molecular weight of dissolved lignin increased, and 2D HSQC NMR revealed reduced β-O-4 cleavage. Accumulated dissolved hemicellulose and its degradation products (e.g., acetic acid, furfural) altered DES properties, increasing viscosity and reducing hydrogen bond basicity, which hindered mass transfer, lignin-carbohydrate complex dissociation, and lignin depolymerization. To address these limitations, activated carbon adsorption (boosting delignification degree to 77%, near fresh DES at 80%) and prehydrolysis (achieving 82% after three cycles vs. 90% for fresh DES) are proposed to remove hemicellulose and its byproducts, minimizing their impact on recycled DES. This study demonstrates the recyclability of DES and proposes two strategies that significantly improve it, ensuring sustainable and efficient biomass fractionation.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"430 ","pages":"Article 132545"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425005115","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The recyclability of lactic acid/choline chloride deep eutectic solvent (DES) in lignocellulose fractionation remains challenging. This study demonstrates that DES reuse reduces delignification efficiency, with a residual lignin content of 9.64% after three cycles, resulting in incomplete fiber separation. The molecular weight of dissolved lignin increased, and 2D HSQC NMR revealed reduced β-O-4 cleavage. Accumulated dissolved hemicellulose and its degradation products (e.g., acetic acid, furfural) altered DES properties, increasing viscosity and reducing hydrogen bond basicity, which hindered mass transfer, lignin-carbohydrate complex dissociation, and lignin depolymerization. To address these limitations, activated carbon adsorption (boosting delignification degree to 77%, near fresh DES at 80%) and prehydrolysis (achieving 82% after three cycles vs. 90% for fresh DES) are proposed to remove hemicellulose and its byproducts, minimizing their impact on recycled DES. This study demonstrates the recyclability of DES and proposes two strategies that significantly improve it, ensuring sustainable and efficient biomass fractionation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信