Economical Investigation of green hydrogen supply for Hydrogen-Powered ship by Off-Grid wave and wind energy hubs

IF 7.1 Q1 ENERGY & FUELS
Sarina Kheirani , Ali Houmani , Mohammad Hossein Jahangir
{"title":"Economical Investigation of green hydrogen supply for Hydrogen-Powered ship by Off-Grid wave and wind energy hubs","authors":"Sarina Kheirani ,&nbsp;Ali Houmani ,&nbsp;Mohammad Hossein Jahangir","doi":"10.1016/j.ecmx.2025.101006","DOIUrl":null,"url":null,"abstract":"<div><div>Given the desire of maritime industry to reduce pollutant emissions and extensive use of hydrogen as an energy carrier, this study explores one possibility. Wave energy is considered as the principal energy source together with wind energy to meet energy needs of hydrogen ships. Using wave energy to provide marine hydrogen has never been done, specifically the economic aspect of it. The optimal configuration for a hydrogen refueling infrastructure is investigated, considering the limitations of a low-potential resource area and the demands of a large hydrogen powered ship. Three hypothetical stops located between two major bays and powered by a combination of wave and wind energy maximize hydrogen production efficiency. Economic outcomes are reviewed and presented from multiple perspectives to ensure reasonable hydrogen production and consumption over a 20-year project life. Levelized cost of hydrogen is best at 2.09$ per kilogram, significantly below the typical price of 3–6$ for initial capital cost of 162$M modeled hybrid system.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"26 ","pages":"Article 101006"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174525001382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Given the desire of maritime industry to reduce pollutant emissions and extensive use of hydrogen as an energy carrier, this study explores one possibility. Wave energy is considered as the principal energy source together with wind energy to meet energy needs of hydrogen ships. Using wave energy to provide marine hydrogen has never been done, specifically the economic aspect of it. The optimal configuration for a hydrogen refueling infrastructure is investigated, considering the limitations of a low-potential resource area and the demands of a large hydrogen powered ship. Three hypothetical stops located between two major bays and powered by a combination of wave and wind energy maximize hydrogen production efficiency. Economic outcomes are reviewed and presented from multiple perspectives to ensure reasonable hydrogen production and consumption over a 20-year project life. Levelized cost of hydrogen is best at 2.09$ per kilogram, significantly below the typical price of 3–6$ for initial capital cost of 162$M modeled hybrid system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信