Finite groups with few character values that are not character degrees

IF 0.7 2区 数学 Q2 MATHEMATICS
Sesuai Y. Madanha , Xavier Mbaale , Tendai M. Mudziiri Shumba
{"title":"Finite groups with few character values that are not character degrees","authors":"Sesuai Y. Madanha ,&nbsp;Xavier Mbaale ,&nbsp;Tendai M. Mudziiri Shumba","doi":"10.1016/j.jpaa.2025.107969","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a finite group and <span><math><mi>χ</mi><mo>∈</mo><mrow><mi>Irr</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Define <span><math><mrow><mi>cv</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>χ</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>|</mo><mi>χ</mi><mo>∈</mo><mrow><mi>Irr</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi>g</mi><mo>∈</mo><mi>G</mi><mo>}</mo></math></span>, <span><math><mrow><mi>cv</mi></mrow><mo>(</mo><mi>χ</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>χ</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>|</mo><mi>g</mi><mo>∈</mo><mi>G</mi><mo>}</mo></math></span> and denote by <span><math><mrow><mi>dl</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> the derived length of <em>G</em>. In the 1990s Berkovich, Chillag and Zhmud described groups <em>G</em> in which <span><math><mo>|</mo><mrow><mi>cv</mi></mrow><mo>(</mo><mi>χ</mi><mo>)</mo><mo>|</mo><mo>=</mo><mn>3</mn></math></span> for every non-linear <span><math><mi>χ</mi><mo>∈</mo><mrow><mi>Irr</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and their results show that <em>G</em> is solvable. They also considered groups in which <span><math><mo>|</mo><mrow><mi>cv</mi></mrow><mo>(</mo><mi>χ</mi><mo>)</mo><mo>|</mo><mo>=</mo><mn>4</mn></math></span> for some non-linear <span><math><mi>χ</mi><mo>∈</mo><mrow><mi>Irr</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Continuing with their work, in this article, we prove that if <span><math><mo>|</mo><mrow><mi>cv</mi></mrow><mo>(</mo><mi>χ</mi><mo>)</mo><mo>|</mo><mo>⩽</mo><mn>4</mn></math></span> for every non-linear <span><math><mi>χ</mi><mo>∈</mo><mrow><mi>Irr</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, then <em>G</em> is solvable. We also considered groups <em>G</em> such that <span><math><mo>|</mo><mrow><mi>cv</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>∖</mo><mrow><mi>cd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>=</mo><mn>2</mn></math></span>. T. Sakurai classified these groups in the case when <span><math><mo>|</mo><mrow><mi>cd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>=</mo><mn>2</mn></math></span>. We show that <em>G</em> is solvable and we classify groups <em>G</em> when <span><math><mo>|</mo><mrow><mi>cd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>⩽</mo><mn>4</mn></math></span> or <span><math><mrow><mi>dl</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩽</mo><mn>3</mn></math></span>. It is interesting to note that these groups are such that <span><math><mo>|</mo><mrow><mi>cv</mi></mrow><mo>(</mo><mi>χ</mi><mo>)</mo><mo>|</mo><mo>⩽</mo><mn>4</mn></math></span> for all <span><math><mi>χ</mi><mo>∈</mo><mrow><mi>Irr</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Lastly, we consider finite groups <em>G</em> with <span><math><mo>|</mo><mrow><mi>cv</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>∖</mo><mrow><mi>cd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>=</mo><mn>3</mn></math></span>. For nilpotent groups, we obtain a characterization which is also connected to the work of Berkovich, Chillag and Zhmud. For non-nilpotent groups, we obtain the structure of <em>G</em> when <span><math><mrow><mi>dl</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107969"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a finite group and χIrr(G). Define cv(G)={χ(g)|χIrr(G),gG}, cv(χ)={χ(g)|gG} and denote by dl(G) the derived length of G. In the 1990s Berkovich, Chillag and Zhmud described groups G in which |cv(χ)|=3 for every non-linear χIrr(G) and their results show that G is solvable. They also considered groups in which |cv(χ)|=4 for some non-linear χIrr(G). Continuing with their work, in this article, we prove that if |cv(χ)|4 for every non-linear χIrr(G), then G is solvable. We also considered groups G such that |cv(G)cd(G)|=2. T. Sakurai classified these groups in the case when |cd(G)|=2. We show that G is solvable and we classify groups G when |cd(G)|4 or dl(G)3. It is interesting to note that these groups are such that |cv(χ)|4 for all χIrr(G). Lastly, we consider finite groups G with |cv(G)cd(G)|=3. For nilpotent groups, we obtain a characterization which is also connected to the work of Berkovich, Chillag and Zhmud. For non-nilpotent groups, we obtain the structure of G when dl(G)=2.
具有少数非字符度的字符值的有限群
设G为有限群,χ∈Irr(G)。定义cv(G)={χ(G) |χ∈Irr(G), G∈G}, cv(χ)={χ(G) | G∈G},用dl(G)表示G的导出长度。1990年代Berkovich, Chillag和Zhmud描述了群G中对于每一个非线性χ∈Irr(G), |cv(χ)|=3,他们的结果表明G是可解的。他们还考虑了对于某些非线性χ∈Irr(G) |cv(χ)|=4的组。继续他们的工作,在这篇文章中,我们证明了如果|cv(χ)|≥4对于每一个非线性χ∈Irr(G),那么G是可解的。我们还考虑了群G使|cv(G) × cd(G)|=2。T. Sakurai在|cd(G)|=2的情况下对这些组进行了分类。我们证明了G是可解的,当|cd(G)|≤4或dl(G)≤3时,我们将G分类。有趣的是,这些组对于所有χ∈Irr(G)都是|cv(χ)|≤4。最后,我们考虑|cv(G) × cd(G)|=3的有限群G。对于幂零群,我们得到了与Berkovich, Chillag和Zhmud的工作相关的一个表征。对于非幂零群,我们得到了dl(G)=2时G的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信