Sesuai Y. Madanha , Xavier Mbaale , Tendai M. Mudziiri Shumba
{"title":"Finite groups with few character values that are not character degrees","authors":"Sesuai Y. Madanha , Xavier Mbaale , Tendai M. Mudziiri Shumba","doi":"10.1016/j.jpaa.2025.107969","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a finite group and <span><math><mi>χ</mi><mo>∈</mo><mrow><mi>Irr</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Define <span><math><mrow><mi>cv</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>χ</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>|</mo><mi>χ</mi><mo>∈</mo><mrow><mi>Irr</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi>g</mi><mo>∈</mo><mi>G</mi><mo>}</mo></math></span>, <span><math><mrow><mi>cv</mi></mrow><mo>(</mo><mi>χ</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>χ</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>|</mo><mi>g</mi><mo>∈</mo><mi>G</mi><mo>}</mo></math></span> and denote by <span><math><mrow><mi>dl</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> the derived length of <em>G</em>. In the 1990s Berkovich, Chillag and Zhmud described groups <em>G</em> in which <span><math><mo>|</mo><mrow><mi>cv</mi></mrow><mo>(</mo><mi>χ</mi><mo>)</mo><mo>|</mo><mo>=</mo><mn>3</mn></math></span> for every non-linear <span><math><mi>χ</mi><mo>∈</mo><mrow><mi>Irr</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and their results show that <em>G</em> is solvable. They also considered groups in which <span><math><mo>|</mo><mrow><mi>cv</mi></mrow><mo>(</mo><mi>χ</mi><mo>)</mo><mo>|</mo><mo>=</mo><mn>4</mn></math></span> for some non-linear <span><math><mi>χ</mi><mo>∈</mo><mrow><mi>Irr</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Continuing with their work, in this article, we prove that if <span><math><mo>|</mo><mrow><mi>cv</mi></mrow><mo>(</mo><mi>χ</mi><mo>)</mo><mo>|</mo><mo>⩽</mo><mn>4</mn></math></span> for every non-linear <span><math><mi>χ</mi><mo>∈</mo><mrow><mi>Irr</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, then <em>G</em> is solvable. We also considered groups <em>G</em> such that <span><math><mo>|</mo><mrow><mi>cv</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>∖</mo><mrow><mi>cd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>=</mo><mn>2</mn></math></span>. T. Sakurai classified these groups in the case when <span><math><mo>|</mo><mrow><mi>cd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>=</mo><mn>2</mn></math></span>. We show that <em>G</em> is solvable and we classify groups <em>G</em> when <span><math><mo>|</mo><mrow><mi>cd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>⩽</mo><mn>4</mn></math></span> or <span><math><mrow><mi>dl</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩽</mo><mn>3</mn></math></span>. It is interesting to note that these groups are such that <span><math><mo>|</mo><mrow><mi>cv</mi></mrow><mo>(</mo><mi>χ</mi><mo>)</mo><mo>|</mo><mo>⩽</mo><mn>4</mn></math></span> for all <span><math><mi>χ</mi><mo>∈</mo><mrow><mi>Irr</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Lastly, we consider finite groups <em>G</em> with <span><math><mo>|</mo><mrow><mi>cv</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>∖</mo><mrow><mi>cd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>=</mo><mn>3</mn></math></span>. For nilpotent groups, we obtain a characterization which is also connected to the work of Berkovich, Chillag and Zhmud. For non-nilpotent groups, we obtain the structure of <em>G</em> when <span><math><mrow><mi>dl</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107969"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a finite group and . Define , and denote by the derived length of G. In the 1990s Berkovich, Chillag and Zhmud described groups G in which for every non-linear and their results show that G is solvable. They also considered groups in which for some non-linear . Continuing with their work, in this article, we prove that if for every non-linear , then G is solvable. We also considered groups G such that . T. Sakurai classified these groups in the case when . We show that G is solvable and we classify groups G when or . It is interesting to note that these groups are such that for all . Lastly, we consider finite groups G with . For nilpotent groups, we obtain a characterization which is also connected to the work of Berkovich, Chillag and Zhmud. For non-nilpotent groups, we obtain the structure of G when .
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.