Analytical techniques for quantifying and identifying nanoplastics: recent advances

IF 6.8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Gabriel E De-la-Torre , Carolin Bapp , Ana D Forero-López , Sina Dobaradaran
{"title":"Analytical techniques for quantifying and identifying nanoplastics: recent advances","authors":"Gabriel E De-la-Torre ,&nbsp;Carolin Bapp ,&nbsp;Ana D Forero-López ,&nbsp;Sina Dobaradaran","doi":"10.1016/j.coche.2025.101134","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoplastics (NPs), plastic particles smaller than 1 µm, have gained particular interest due to their ability to translocate across biological barriers. However, their quantification and identification across environmental matrices have proven to be a complex and significant challenge. As the literature on NPs continues to grow, we believe that it is imperative to provide a timely analysis and discussion of the latest advances. In this contribution, we will discuss the analytical techniques employed in the most recent studies on the quantification of NPs and provide analytical recommendations based on the latest developments in this line of research.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101134"},"PeriodicalIF":6.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000450","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoplastics (NPs), plastic particles smaller than 1 µm, have gained particular interest due to their ability to translocate across biological barriers. However, their quantification and identification across environmental matrices have proven to be a complex and significant challenge. As the literature on NPs continues to grow, we believe that it is imperative to provide a timely analysis and discussion of the latest advances. In this contribution, we will discuss the analytical techniques employed in the most recent studies on the quantification of NPs and provide analytical recommendations based on the latest developments in this line of research.
定量和鉴定纳米塑料的分析技术:最新进展
纳米塑料(NPs)是一种小于1微米的塑料颗粒,由于其跨越生物屏障的转运能力而受到特别关注。然而,它们在环境矩阵中的量化和鉴定已被证明是一项复杂而重大的挑战。随着关于NPs的文献不断增长,我们认为有必要及时分析和讨论最新进展。在这篇文章中,我们将讨论最新的NPs定量研究中使用的分析技术,并根据这一研究领域的最新发展提供分析建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信