A computer vision and RFID fusion-based method for measuring individual feed intake and its application for detecting individual differences in feed efficiency of large yellow croaker (Larimichthys crocea)

IF 5.1 Q1 ENVIRONMENTAL SCIENCES
Miaosheng Feng , Pengxin Jiang , Qiaozhen Ke , Suyao Liu , Yuwei Chen , Yuqing Du , Wenjun Luo , Yuxuan Liu , Qingxiu Cai , Zihang Zeng , Tingkai Zhou , Yu Zhang , Peng Xu
{"title":"A computer vision and RFID fusion-based method for measuring individual feed intake and its application for detecting individual differences in feed efficiency of large yellow croaker (Larimichthys crocea)","authors":"Miaosheng Feng ,&nbsp;Pengxin Jiang ,&nbsp;Qiaozhen Ke ,&nbsp;Suyao Liu ,&nbsp;Yuwei Chen ,&nbsp;Yuqing Du ,&nbsp;Wenjun Luo ,&nbsp;Yuxuan Liu ,&nbsp;Qingxiu Cai ,&nbsp;Zihang Zeng ,&nbsp;Tingkai Zhou ,&nbsp;Yu Zhang ,&nbsp;Peng Xu","doi":"10.1016/j.watbs.2024.100332","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating the individual feed intake (FI) for multiple consecutive meals of fish reared at commercial densities has long been a challenge and this difficulty has prevented the genetic improvement of feed efficiency (FE) in fish. We propose an automatic and real-time measurement system for individual FI of fish reared in a group based on computer vision and radio frequency identification fusion technology in large yellow croaker (<em>Larimichthys crocea</em>). To achieve this, we designed a feeding station where only one fish at a time can enter and have their passive integrated transponder (PIT) tag recorded. We then trained a feed pellet detection model based on You Only Look Once v5 using an annotated dataset, which achieved a final precision of nearly 100%. Finally, we utilized the trained feed detection model combined with PIT scanning to accurately and automatically track individual FI of fish with access to the feeding station. In 10 experiments lasting a total of 792 ​min conducted in the laboratory, the automatic real-time feed counting achieved an average accuracy of 94.5%. In addition, during a 14-day FI measurement period conducted in an indoor farm with 894 fish that received two meals per day, large yellow croaker feed efficiency ratio (FER) was 0.9 ​± ​0.4 with a coefficient of variation of 47%. FER showed a weak positive correlation with initial body weight and a weak negative correlative with FI. There was also a moderate correlation between FER and body weight gain (BWG), with subgroups that had high BWG exhibiting greater FER values. The approach described here demonstrates a method to automatically and accurately investigate FER in fish that can be used to assess the potential for their genetic improvement.</div></div>","PeriodicalId":101277,"journal":{"name":"Water Biology and Security","volume":"4 2","pages":"Article 100332"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Biology and Security","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772735124001045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating the individual feed intake (FI) for multiple consecutive meals of fish reared at commercial densities has long been a challenge and this difficulty has prevented the genetic improvement of feed efficiency (FE) in fish. We propose an automatic and real-time measurement system for individual FI of fish reared in a group based on computer vision and radio frequency identification fusion technology in large yellow croaker (Larimichthys crocea). To achieve this, we designed a feeding station where only one fish at a time can enter and have their passive integrated transponder (PIT) tag recorded. We then trained a feed pellet detection model based on You Only Look Once v5 using an annotated dataset, which achieved a final precision of nearly 100%. Finally, we utilized the trained feed detection model combined with PIT scanning to accurately and automatically track individual FI of fish with access to the feeding station. In 10 experiments lasting a total of 792 ​min conducted in the laboratory, the automatic real-time feed counting achieved an average accuracy of 94.5%. In addition, during a 14-day FI measurement period conducted in an indoor farm with 894 fish that received two meals per day, large yellow croaker feed efficiency ratio (FER) was 0.9 ​± ​0.4 with a coefficient of variation of 47%. FER showed a weak positive correlation with initial body weight and a weak negative correlative with FI. There was also a moderate correlation between FER and body weight gain (BWG), with subgroups that had high BWG exhibiting greater FER values. The approach described here demonstrates a method to automatically and accurately investigate FER in fish that can be used to assess the potential for their genetic improvement.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信