Aqsa Sabir , Rahat Hussain , Akeem Pedro , Chansik Park
{"title":"Personalized construction safety training system using conversational AI in virtual reality","authors":"Aqsa Sabir , Rahat Hussain , Akeem Pedro , Chansik Park","doi":"10.1016/j.autcon.2025.106207","DOIUrl":null,"url":null,"abstract":"<div><div>Training workers in safety protocols is crucial for mitigating job site hazards, yet traditional methods often fall short. This paper explores integrating virtual reality (VR) and large language models (LLMs) into iSafeTrainer, an AI-powered safety training system. The system allows trainees to engage with trade-specific content tailored to their expertise level in a third-person perspective in a non-immersive desktop virtual environment, eliminating the need for head-mounted displays. An experimental study evaluated the system through qualitative, survey-based assessments, focusing on user satisfaction, experience, engagement, guidance, and confidence. Results showed high satisfaction rates (>85 %) among novice users, with improved safety knowledge. Expert users suggested advanced scenarios, highlighting the system's potential for expansion. The modular architecture supports customization across various construction settings, ensuring adaptability for future improvements.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"175 ","pages":"Article 106207"},"PeriodicalIF":9.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092658052500247X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Training workers in safety protocols is crucial for mitigating job site hazards, yet traditional methods often fall short. This paper explores integrating virtual reality (VR) and large language models (LLMs) into iSafeTrainer, an AI-powered safety training system. The system allows trainees to engage with trade-specific content tailored to their expertise level in a third-person perspective in a non-immersive desktop virtual environment, eliminating the need for head-mounted displays. An experimental study evaluated the system through qualitative, survey-based assessments, focusing on user satisfaction, experience, engagement, guidance, and confidence. Results showed high satisfaction rates (>85 %) among novice users, with improved safety knowledge. Expert users suggested advanced scenarios, highlighting the system's potential for expansion. The modular architecture supports customization across various construction settings, ensuring adaptability for future improvements.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.