{"title":"Slow dynamic nonlinear elasticity during and after conditioning, a unified theory and a lock-in probe","authors":"John Y. Yoritomo , Richard L. Weaver","doi":"10.1016/j.jmps.2025.106149","DOIUrl":null,"url":null,"abstract":"<div><div>Of the non-classical nonlinear elastic phenomena, slow dynamics (SD) has received particular attention due to recent modeling efforts and experiments in new systems. SD is characterized by a loss of stiffness after a minor conditioning strain, followed by a slow recovery back towards the original stiffness. It is observed in many imperfectly consolidated granular materials (e.g., rocks and concrete) and unconsolidated systems (e.g., bead packs). Here we posit a simple unified phenomenological model capable of seamlessly describing modulus evolution for SD materials during steady-state conditioning, during conditioning ringdown, and during recovery. It envisions a distribution of breaking and healing bonds, with healing rates governed by the usual spectrum of relaxation times. Well after the end of conditioning, the model recovers the characteristic logarithmic-in-time relaxation. For times during conditioning ringdown, when recovery has initiated but conditioning has not fully ceased, the model predicts deviations from log(t) and a dependence on the ringdown rate. We compare these model predictions with SD measurements on four different systems. To perform the measurements, an ultrasonic digital lock-in (DLI) probe is developed. The advantages of DLI over other techniques to measure SD are a sufficiently high time resolution and an insensitivity to noise from conditioning. We find good agreement between theory and experiment. The model in conjunction with DLI also allows for estimates of the minimum relaxation time. Our measurements indicate that the minimum relaxation time is material dependent.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"200 ","pages":"Article 106149"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625001255","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Of the non-classical nonlinear elastic phenomena, slow dynamics (SD) has received particular attention due to recent modeling efforts and experiments in new systems. SD is characterized by a loss of stiffness after a minor conditioning strain, followed by a slow recovery back towards the original stiffness. It is observed in many imperfectly consolidated granular materials (e.g., rocks and concrete) and unconsolidated systems (e.g., bead packs). Here we posit a simple unified phenomenological model capable of seamlessly describing modulus evolution for SD materials during steady-state conditioning, during conditioning ringdown, and during recovery. It envisions a distribution of breaking and healing bonds, with healing rates governed by the usual spectrum of relaxation times. Well after the end of conditioning, the model recovers the characteristic logarithmic-in-time relaxation. For times during conditioning ringdown, when recovery has initiated but conditioning has not fully ceased, the model predicts deviations from log(t) and a dependence on the ringdown rate. We compare these model predictions with SD measurements on four different systems. To perform the measurements, an ultrasonic digital lock-in (DLI) probe is developed. The advantages of DLI over other techniques to measure SD are a sufficiently high time resolution and an insensitivity to noise from conditioning. We find good agreement between theory and experiment. The model in conjunction with DLI also allows for estimates of the minimum relaxation time. Our measurements indicate that the minimum relaxation time is material dependent.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.