Accelerated discharging kinetics in zigzag- shaped triplex-tube latent heat storage with nano-modified phase change materials additives

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Saleh Al Arni , Hakim S. Sultan Aljibori , Azher M. Abed , Hayder I. Mohammed , Jasim M. Mahdi , Hussein Togun , Abdellatif M. Sadeq , Mohammad Ghalambaz , Nidhal Ben Khedher
{"title":"Accelerated discharging kinetics in zigzag- shaped triplex-tube latent heat storage with nano-modified phase change materials additives","authors":"Saleh Al Arni ,&nbsp;Hakim S. Sultan Aljibori ,&nbsp;Azher M. Abed ,&nbsp;Hayder I. Mohammed ,&nbsp;Jasim M. Mahdi ,&nbsp;Hussein Togun ,&nbsp;Abdellatif M. Sadeq ,&nbsp;Mohammad Ghalambaz ,&nbsp;Nidhal Ben Khedher","doi":"10.1016/j.csite.2025.106140","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores efficient schemes to substantially accelerate the discharge rates of phase change materials contained in a zigzag-shaped triplex-tube heat exchanger. It comprehensively investigates how zigzag geometry, heat transfer fluid flow parameters, and nanoparticle additives affect PCM discharge characteristics. Introducing a high 67.5° zigzag angle produced a 43.8 W solidification rate, which improves discharge rate by 10.6 % over straight tubes by increasing heat transfer area and promoting vortex formation. Extending the zigzag length to 15 mm further boosted the rate by 61.5 %–157.4 W by expanding the heat exchange surface area. Increasing the Reynolds number of the heat transfer fluid from 250 to 500 enhanced the solidification rate by 26 %–157.4 W by augmenting convective heat transfer. Lowering the heat transfer fluid inlet temperature from 20 °C to 10 °C dramatically reduced solidification time by 75 %, from 1956 s to 774 s by accelerating phase transition kinetics. Furthermore, adding 4 % aluminum oxide nanoparticles improved the rate by 16 %–182 W by enhancing thermal conductivity. Combining optimal parameters (67.5° zigzag angle, 15 mm length, 500 Reynolds number, 10 °C inlet temperature, and 4 % aluminum oxide nanoparticles) achieved a remarkable 300 % increase in discharge rate, from 39.6 W to 198.4 W compared to baseline straight tube configurations with pure phase change material.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"70 ","pages":"Article 106140"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25004009","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores efficient schemes to substantially accelerate the discharge rates of phase change materials contained in a zigzag-shaped triplex-tube heat exchanger. It comprehensively investigates how zigzag geometry, heat transfer fluid flow parameters, and nanoparticle additives affect PCM discharge characteristics. Introducing a high 67.5° zigzag angle produced a 43.8 W solidification rate, which improves discharge rate by 10.6 % over straight tubes by increasing heat transfer area and promoting vortex formation. Extending the zigzag length to 15 mm further boosted the rate by 61.5 %–157.4 W by expanding the heat exchange surface area. Increasing the Reynolds number of the heat transfer fluid from 250 to 500 enhanced the solidification rate by 26 %–157.4 W by augmenting convective heat transfer. Lowering the heat transfer fluid inlet temperature from 20 °C to 10 °C dramatically reduced solidification time by 75 %, from 1956 s to 774 s by accelerating phase transition kinetics. Furthermore, adding 4 % aluminum oxide nanoparticles improved the rate by 16 %–182 W by enhancing thermal conductivity. Combining optimal parameters (67.5° zigzag angle, 15 mm length, 500 Reynolds number, 10 °C inlet temperature, and 4 % aluminum oxide nanoparticles) achieved a remarkable 300 % increase in discharge rate, from 39.6 W to 198.4 W compared to baseline straight tube configurations with pure phase change material.
添加纳米改性相变材料的锯齿形三管潜热蓄热加速放电动力学
本研究探索了一种有效的方案,以大大加快三相管之字形换热器中相变材料的放电速率。它全面研究了锯齿形几何形状、传热流体流动参数和纳米颗粒添加剂如何影响PCM放电特性。引入67.5°之字形角可以产生43.8 W的凝固速率,通过增加传热面积和促进涡流的形成,比直管提高了10.6%的放电速率。将之字形长度延长至15mm,通过扩大换热表面积,进一步提高了61.5% -157.4 W的传热速率。将传热流体的雷诺数从250增加到500,通过增加对流换热,使凝固速率提高了26% -157.4 W。将传热流体入口温度从20°C降低到10°C,通过加速相变动力学,使凝固时间从1956 s缩短到774 s,显著缩短了75%。此外,添加4%的氧化铝纳米颗粒通过增强导热性,使速率提高了16% -182 W。结合最优参数(67.5°之字形角、15 mm长度、500雷诺数、10°C进口温度和4%氧化铝纳米颗粒),与纯相变材料的基准直管配置相比,放电率显著提高了300%,从39.6 W提高到198.4 W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信