Wei Yang , Meina Xiong , Dongliang Jin, Jing Zhong
{"title":"Review on molecular modeling-facilitated design of porous membranes","authors":"Wei Yang , Meina Xiong , Dongliang Jin, Jing Zhong","doi":"10.1016/j.advmem.2025.100145","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular modeling techniques are regarded as an effective approach to study various advanced membranes at the microscale. These investigations of porous membranes are devoted to better understanding their chemical structures, pore topology and morphology, transport/permeation mechanisms, and the structure-activity relationship. This review provides an overview of current research on the molecular simulations of the structure, gas-/liquid-phase transport, and phase behaviors in porous membranes. In more detail, quantum chemistry is first introduced to probe the structures of porous membranes at the molecular/atomistic level. In this part, the pore topology estimated by using the geometric algorithm is also presented. Transport properties of porous membranes determined using molecular dynamics are then summarized. To study the formation kinetics of membranes and the diffusion kinetics of fluids within membrane’s pores, free energy calculations are discussed. Moreover, the phase behaviors involved in the membrane process by Monte Carlo simulations are presented. Finally, a brief discussion of the multiscale simulations is provided to comprehensively understand the structure-activity relationship. These theoretical works pave constructive ways for the design of functional membranes used for separation and purification, energy harvesting and storage, petrochemical engineering, and so on.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100145"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular modeling techniques are regarded as an effective approach to study various advanced membranes at the microscale. These investigations of porous membranes are devoted to better understanding their chemical structures, pore topology and morphology, transport/permeation mechanisms, and the structure-activity relationship. This review provides an overview of current research on the molecular simulations of the structure, gas-/liquid-phase transport, and phase behaviors in porous membranes. In more detail, quantum chemistry is first introduced to probe the structures of porous membranes at the molecular/atomistic level. In this part, the pore topology estimated by using the geometric algorithm is also presented. Transport properties of porous membranes determined using molecular dynamics are then summarized. To study the formation kinetics of membranes and the diffusion kinetics of fluids within membrane’s pores, free energy calculations are discussed. Moreover, the phase behaviors involved in the membrane process by Monte Carlo simulations are presented. Finally, a brief discussion of the multiscale simulations is provided to comprehensively understand the structure-activity relationship. These theoretical works pave constructive ways for the design of functional membranes used for separation and purification, energy harvesting and storage, petrochemical engineering, and so on.