F.J. Rubio-Barbero, F. de los Santos-Prieto, R. Castro-Lopez, E. Roca, F.V. Fernandez
{"title":"Harvesting random telegraph noise for true random number generation","authors":"F.J. Rubio-Barbero, F. de los Santos-Prieto, R. Castro-Lopez, E. Roca, F.V. Fernandez","doi":"10.1016/j.aeue.2025.155801","DOIUrl":null,"url":null,"abstract":"<div><div>At first glance, Random Telegraph Noise (RTN) in deeply scaled CMOS transistors may seem like a reliability nuisance. Yet, behind the discrete trapping-and-detrapping events lurks a potent source of hardware entropy. In this paper, we harness RTN to build a dual-purpose security module that serves as both a Physical Unclonable Function (PUF) and a True Random Number Generator (TRNG). By measuring the so-called Maximum Current Fluctuation (MCF) at carefully chosen observation windows, our design switches effortlessly between the stable outputs needed for a PUF and the maximally unpredictable bitstreams demanded by a TRNG. Although single-defect RTN has long been deemed ideal for randomness, we show that multi-defect RTN scenarios, much more prevalent in real-world manufacturing, can also yield high-quality random bits, especially when aided by lightweight post-processing. Simple statistical metrics guide the initial tuning, after which the final bitstreams pass the NIST SP 800-22 test suite to validate the statistical soundness of our proposal. In doing so, we address key challenges that arise when designing an RTN-based TRNG and compare our results against state-of-the-art solutions, highlighting advantages in circuit simplicity, bit-rate scalability, and dual-use capability.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"196 ","pages":"Article 155801"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841125001426","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
At first glance, Random Telegraph Noise (RTN) in deeply scaled CMOS transistors may seem like a reliability nuisance. Yet, behind the discrete trapping-and-detrapping events lurks a potent source of hardware entropy. In this paper, we harness RTN to build a dual-purpose security module that serves as both a Physical Unclonable Function (PUF) and a True Random Number Generator (TRNG). By measuring the so-called Maximum Current Fluctuation (MCF) at carefully chosen observation windows, our design switches effortlessly between the stable outputs needed for a PUF and the maximally unpredictable bitstreams demanded by a TRNG. Although single-defect RTN has long been deemed ideal for randomness, we show that multi-defect RTN scenarios, much more prevalent in real-world manufacturing, can also yield high-quality random bits, especially when aided by lightweight post-processing. Simple statistical metrics guide the initial tuning, after which the final bitstreams pass the NIST SP 800-22 test suite to validate the statistical soundness of our proposal. In doing so, we address key challenges that arise when designing an RTN-based TRNG and compare our results against state-of-the-art solutions, highlighting advantages in circuit simplicity, bit-rate scalability, and dual-use capability.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.