Nina Zamani , Sara Satolli , Michael Murphy , Francois Demory , Bruno Pace , Jérôme Gattacceca , Ján Kaňuk , Michaela Nováková , Raphael Gottardi , Eric C. Ferré
{"title":"Record of seismic slip in carbonates: Insights from the Venere Fault during the 1915 Avezzano earthquake (Mw 7.0), Central Italy","authors":"Nina Zamani , Sara Satolli , Michael Murphy , Francois Demory , Bruno Pace , Jérôme Gattacceca , Ján Kaňuk , Michaela Nováková , Raphael Gottardi , Eric C. Ferré","doi":"10.1016/j.jsg.2025.105421","DOIUrl":null,"url":null,"abstract":"<div><div>The Mw 7.0 Avezzano earthquake in the Abbruzzo region of Italy claimed ∼33,000 lives on January 13, 1915 making it one of the worst disasters in modern Italian history. The main rupture occurred along the Venere Fault, characterized by a polished, locally shiny, or powdery fault mirror showing extensive downdip striations, slickensides, and local reddish iron-oxide/hydroxide stains. The layer immediately below the mirror is a carbonate ultracataclasite that locally grades into an unconsolidated carbonate gouge.</div><div>This type of carbonate fault mirror typically forms through two distinct synkinematic processes: i) intense frictional heating causing decarbonation, or ii) progressive grain-size reduction during slip at seismic velocities. In either case, friction drops substantially after initial displacement. The first process also results in intense fault pressurization followed by subsequent drastic drop in normal stress. Despite recent advances, the switch from high-friction/low slip velocity to low-friction/high slip velocity conditions in carbonate is still not fully understood.</div><div>The Venere Fault, characterized by proven friction at seismic slip velocity, provides an ideal setting to investigate the nature and extent of dynamic weakening processes in carbonate faults. We use the high temperature sensitivity of iron oxide/hydroxide assemblages, and their magnetic remanence, to estimate frictional heat. Evidence for seismic slip in iron oxides and temperature uniformity along the fault surface have been tested through demagnetization experiments and 1D heat conduction modeling. Our data shows that the fault mirror underwent frictional heating during the 0.8 m slip event, but that this displacement was insufficient to reach pervasive decarbonation. We constrain the peak coseismic temperature along the fault plane to <400 °C through demagnetization experiments and 1D heat conduction modeling. Our results emphasize that coseismic deformation along natural faults is complex and therefore requires complementary field observations at multiple scales in order to encompass a broad range of faulting processes.</div></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":"197 ","pages":"Article 105421"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814125000963","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Mw 7.0 Avezzano earthquake in the Abbruzzo region of Italy claimed ∼33,000 lives on January 13, 1915 making it one of the worst disasters in modern Italian history. The main rupture occurred along the Venere Fault, characterized by a polished, locally shiny, or powdery fault mirror showing extensive downdip striations, slickensides, and local reddish iron-oxide/hydroxide stains. The layer immediately below the mirror is a carbonate ultracataclasite that locally grades into an unconsolidated carbonate gouge.
This type of carbonate fault mirror typically forms through two distinct synkinematic processes: i) intense frictional heating causing decarbonation, or ii) progressive grain-size reduction during slip at seismic velocities. In either case, friction drops substantially after initial displacement. The first process also results in intense fault pressurization followed by subsequent drastic drop in normal stress. Despite recent advances, the switch from high-friction/low slip velocity to low-friction/high slip velocity conditions in carbonate is still not fully understood.
The Venere Fault, characterized by proven friction at seismic slip velocity, provides an ideal setting to investigate the nature and extent of dynamic weakening processes in carbonate faults. We use the high temperature sensitivity of iron oxide/hydroxide assemblages, and their magnetic remanence, to estimate frictional heat. Evidence for seismic slip in iron oxides and temperature uniformity along the fault surface have been tested through demagnetization experiments and 1D heat conduction modeling. Our data shows that the fault mirror underwent frictional heating during the 0.8 m slip event, but that this displacement was insufficient to reach pervasive decarbonation. We constrain the peak coseismic temperature along the fault plane to <400 °C through demagnetization experiments and 1D heat conduction modeling. Our results emphasize that coseismic deformation along natural faults is complex and therefore requires complementary field observations at multiple scales in order to encompass a broad range of faulting processes.
期刊介绍:
The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.