Emission risks in processing and conversion of lignocellulose-based biocomposites

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Nanci Ehman , Sandra Rodríguez Fabià , Julia Catalán , Gary Chinga-Carrasco
{"title":"Emission risks in processing and conversion of lignocellulose-based biocomposites","authors":"Nanci Ehman ,&nbsp;Sandra Rodríguez Fabià ,&nbsp;Julia Catalán ,&nbsp;Gary Chinga-Carrasco","doi":"10.1016/j.jcomc.2025.100595","DOIUrl":null,"url":null,"abstract":"<div><div>Wood-derived components (e.g. fibers, lignin, nanofibers) are widely studied to develop thermoplastic biocomposites with, for example, improved mechanical properties and reduced global warming potential. Manufacturing of biocomposite products includes compounding and conversion processes (e.g., extrusion, injection molding, and 3D printing). These processes apply mechanical forces and heat to melt thermoplastic polymers and form a given product. However, in some cases, compounding and conversion stages may generate emissions of volatile organic compounds (VOC) and/or ultrafine particles (UFP) and we must consider their effects on human health. Additionally, due to the nano-dimensions cellulose nanofibers are considered UFP. Therefore, its impacts on human health should be evaluated, especially when dried for biocomposite production. This review provides an overview of emissions generated in the production line of lignocellulose-based biocomposites, considering: wood preprocessing, extrusion, 3D printing, and injection moulding. Emissions of VOCs and UFP were considered, including the occupational exposure limits according to the current regulations and the potential health effects associated with such emissions</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"17 ","pages":"Article 100595"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Wood-derived components (e.g. fibers, lignin, nanofibers) are widely studied to develop thermoplastic biocomposites with, for example, improved mechanical properties and reduced global warming potential. Manufacturing of biocomposite products includes compounding and conversion processes (e.g., extrusion, injection molding, and 3D printing). These processes apply mechanical forces and heat to melt thermoplastic polymers and form a given product. However, in some cases, compounding and conversion stages may generate emissions of volatile organic compounds (VOC) and/or ultrafine particles (UFP) and we must consider their effects on human health. Additionally, due to the nano-dimensions cellulose nanofibers are considered UFP. Therefore, its impacts on human health should be evaluated, especially when dried for biocomposite production. This review provides an overview of emissions generated in the production line of lignocellulose-based biocomposites, considering: wood preprocessing, extrusion, 3D printing, and injection moulding. Emissions of VOCs and UFP were considered, including the occupational exposure limits according to the current regulations and the potential health effects associated with such emissions

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信