Emission risks in processing and conversion of lignocellulose-based biocomposites

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Nanci Ehman , Sandra Rodríguez Fabià , Julia Catalán , Gary Chinga-Carrasco
{"title":"Emission risks in processing and conversion of lignocellulose-based biocomposites","authors":"Nanci Ehman ,&nbsp;Sandra Rodríguez Fabià ,&nbsp;Julia Catalán ,&nbsp;Gary Chinga-Carrasco","doi":"10.1016/j.jcomc.2025.100595","DOIUrl":null,"url":null,"abstract":"<div><div>Wood-derived components (e.g. fibers, lignin, nanofibers) are widely studied to develop thermoplastic biocomposites with, for example, improved mechanical properties and reduced global warming potential. Manufacturing of biocomposite products includes compounding and conversion processes (e.g., extrusion, injection molding, and 3D printing). These processes apply mechanical forces and heat to melt thermoplastic polymers and form a given product. However, in some cases, compounding and conversion stages may generate emissions of volatile organic compounds (VOC) and/or ultrafine particles (UFP) and we must consider their effects on human health. Additionally, due to the nano-dimensions cellulose nanofibers are considered UFP. Therefore, its impacts on human health should be evaluated, especially when dried for biocomposite production. This review provides an overview of emissions generated in the production line of lignocellulose-based biocomposites, considering: wood preprocessing, extrusion, 3D printing, and injection moulding. Emissions of VOCs and UFP were considered, including the occupational exposure limits according to the current regulations and the potential health effects associated with such emissions</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"17 ","pages":"Article 100595"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Wood-derived components (e.g. fibers, lignin, nanofibers) are widely studied to develop thermoplastic biocomposites with, for example, improved mechanical properties and reduced global warming potential. Manufacturing of biocomposite products includes compounding and conversion processes (e.g., extrusion, injection molding, and 3D printing). These processes apply mechanical forces and heat to melt thermoplastic polymers and form a given product. However, in some cases, compounding and conversion stages may generate emissions of volatile organic compounds (VOC) and/or ultrafine particles (UFP) and we must consider their effects on human health. Additionally, due to the nano-dimensions cellulose nanofibers are considered UFP. Therefore, its impacts on human health should be evaluated, especially when dried for biocomposite production. This review provides an overview of emissions generated in the production line of lignocellulose-based biocomposites, considering: wood preprocessing, extrusion, 3D printing, and injection moulding. Emissions of VOCs and UFP were considered, including the occupational exposure limits according to the current regulations and the potential health effects associated with such emissions

Abstract Image

木质纤维素基生物复合材料加工和转化中的排放风险
木材衍生成分(如纤维、木质素、纳米纤维)被广泛研究,以开发热塑性生物复合材料,例如,改善机械性能和降低全球变暖潜力。生物复合材料产品的制造包括复合和转化过程(例如,挤出,注塑和3D打印)。这些过程应用机械力和热来熔化热塑性聚合物并形成给定的产品。然而,在某些情况下,复合和转化阶段可能会产生挥发性有机化合物(VOC)和/或超细颗粒(UFP)的排放,我们必须考虑它们对人体健康的影响。此外,由于纳米尺寸的纤维素纳米纤维被认为是UFP。因此,应评估其对人类健康的影响,特别是在干燥用于生物复合材料生产时。本文综述了木质纤维素基生物复合材料生产线产生的排放,包括木材预处理、挤压、3D打印和注塑。审议了挥发性有机化合物和超强力有机化合物的排放,包括现行法规规定的职业接触限值以及与此类排放有关的潜在健康影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信