{"title":"Integrated transcriptomics of multiple sclerosis peripheral blood mononuclear cells explored potential biomarkers for the disease","authors":"Arman Mokaram Doust Delkhah","doi":"10.1016/j.bbrep.2025.102022","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Despite their importance, blood RNAs have not been comprehensively studied as potential diagnostic markers for multiple sclerosis (MS). Herein, by the integration of GSE21942 and GSE203241 microarray profiles of peripheral blood mononuclear cells, this study explored potential biomarkers for the disease.</div></div><div><h3>Methods</h3><div>After identification of differentially expressed genes (DEGs), functional enrichment analyses were performed, and PPI and miRNA-mRNA regulatory networks were constructed. After implementing weighted gene co-expression network analysis (WGCNA) and discovering MS-specific modules, the converging results of differential expression analysis and WGCNA were subjected to machine learning methods. Lastly, the diagnostic performance of the prominent genes was evaluated by receiver operating characteristic (ROC) analysis.</div></div><div><h3>Results</h3><div><em>COPG1</em>, <em>RPN1</em>, and <em>KDM3B</em> were initially highlighted as potential biomarkers based on their acceptable diagnostic efficacy in the integrated data, as well as in both GSE141804 and GSE146383 datasets as external validation sets. However, given that they were downregulated in the integrated data while they were upregulated in the validation sets, they could not be considered as potential biomarkers for the disease. In addition to this inconsistency, evaluating their diagnostic performance in other external datasets (GSE247181, GSE59085, and GSE17393) did not reveal their diagnostic efficacy.</div></div><div><h3>Conclusions</h3><div>This study could not unveil promising blood biomarkers for MS, possibly due to a small sample size and unaccounted confounding factors. Considering PBMCs and blood specimens as valuable sources for the identification of biomarkers, further transcriptomic analyses are needed to discover potential biomarkers for the disease.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"42 ","pages":"Article 102022"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Despite their importance, blood RNAs have not been comprehensively studied as potential diagnostic markers for multiple sclerosis (MS). Herein, by the integration of GSE21942 and GSE203241 microarray profiles of peripheral blood mononuclear cells, this study explored potential biomarkers for the disease.
Methods
After identification of differentially expressed genes (DEGs), functional enrichment analyses were performed, and PPI and miRNA-mRNA regulatory networks were constructed. After implementing weighted gene co-expression network analysis (WGCNA) and discovering MS-specific modules, the converging results of differential expression analysis and WGCNA were subjected to machine learning methods. Lastly, the diagnostic performance of the prominent genes was evaluated by receiver operating characteristic (ROC) analysis.
Results
COPG1, RPN1, and KDM3B were initially highlighted as potential biomarkers based on their acceptable diagnostic efficacy in the integrated data, as well as in both GSE141804 and GSE146383 datasets as external validation sets. However, given that they were downregulated in the integrated data while they were upregulated in the validation sets, they could not be considered as potential biomarkers for the disease. In addition to this inconsistency, evaluating their diagnostic performance in other external datasets (GSE247181, GSE59085, and GSE17393) did not reveal their diagnostic efficacy.
Conclusions
This study could not unveil promising blood biomarkers for MS, possibly due to a small sample size and unaccounted confounding factors. Considering PBMCs and blood specimens as valuable sources for the identification of biomarkers, further transcriptomic analyses are needed to discover potential biomarkers for the disease.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.