{"title":"An evolution strategies-based reinforcement learning algorithm for multi-objective dynamic parallel machine scheduling problems","authors":"Yarong Chen , Junjie Zhang , Jabir Mumtaz , Shenquan Huang , Shengwei Zhou","doi":"10.1016/j.swevo.2025.101944","DOIUrl":null,"url":null,"abstract":"<div><div>The multi-objective dynamic parallel machine scheduling (PMS) problem is a complex combinatorial optimization challenge encountered in manufacturing systems. Various uncertainties exist in the real-world dynamic PMS problem, such as job release time, processing time, and flexible preventive maintenance for machines. The goal is simultaneously optimizing multiple objectives under dynamic and uncertain environments, such as makespan, total tardiness, and energy consumption. This paper proposes an evolution strategies-based reinforcement learning (ESRL) algorithm to address the current multi-objective dynamic PMS problem. The proposed algorithm leverages the exploration capabilities of evolution strategies to evolve effective policies for reinforcement learning in dynamic scheduling. Moreover, the efficiency of the ESRL algorithm is enhanced by implanting three features: a) train the policy to iteratively produce the sequence directly and mitigate the sparse reward issue resulting from the symmetry inherent in the given problem; b) a multi-agent system with independent interaction and centralized training to generate the PMS policy simultaneously; c) a non-dominated sorting mechanism to determine fitness function. Extensive computational experimental results show that the ESRL algorithm outperforms the comparison state-of-the-art evolutionary algorithms and priority dispatching rules in terms of solution quality, convergence, and efficiency, with the advantage of the C-matrix exceeding 60 %, and the advantages in GD and NR surpassing 50 %. Furthermore, ablation experiments demonstrate the significant contributions of additional features in ESRL in enhancing the algorithm's performance. Meanwhile, the results of generalization experiments indicate that the ESRL quickly generates Pareto optimal solutions allowing the trained model to make optimal scheduling decisions.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"95 ","pages":"Article 101944"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225001026","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The multi-objective dynamic parallel machine scheduling (PMS) problem is a complex combinatorial optimization challenge encountered in manufacturing systems. Various uncertainties exist in the real-world dynamic PMS problem, such as job release time, processing time, and flexible preventive maintenance for machines. The goal is simultaneously optimizing multiple objectives under dynamic and uncertain environments, such as makespan, total tardiness, and energy consumption. This paper proposes an evolution strategies-based reinforcement learning (ESRL) algorithm to address the current multi-objective dynamic PMS problem. The proposed algorithm leverages the exploration capabilities of evolution strategies to evolve effective policies for reinforcement learning in dynamic scheduling. Moreover, the efficiency of the ESRL algorithm is enhanced by implanting three features: a) train the policy to iteratively produce the sequence directly and mitigate the sparse reward issue resulting from the symmetry inherent in the given problem; b) a multi-agent system with independent interaction and centralized training to generate the PMS policy simultaneously; c) a non-dominated sorting mechanism to determine fitness function. Extensive computational experimental results show that the ESRL algorithm outperforms the comparison state-of-the-art evolutionary algorithms and priority dispatching rules in terms of solution quality, convergence, and efficiency, with the advantage of the C-matrix exceeding 60 %, and the advantages in GD and NR surpassing 50 %. Furthermore, ablation experiments demonstrate the significant contributions of additional features in ESRL in enhancing the algorithm's performance. Meanwhile, the results of generalization experiments indicate that the ESRL quickly generates Pareto optimal solutions allowing the trained model to make optimal scheduling decisions.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.