Zedong Bi , Ruiqi Fu , Guozhang Chen , Dongping Yang , Yu Zhou , Liang Tian
{"title":"Evolutionary learning in neural networks by heterosynaptic plasticity","authors":"Zedong Bi , Ruiqi Fu , Guozhang Chen , Dongping Yang , Yu Zhou , Liang Tian","doi":"10.1016/j.isci.2025.112340","DOIUrl":null,"url":null,"abstract":"<div><div>Training biophysical neuron models provides insights into brain circuits’ organization and problem-solving capabilities. Traditional training methods like backpropagation face challenges with complex models due to instability and gradient issues. We explore evolutionary algorithms (EAs) combined with heterosynaptic plasticity as a gradient-free alternative. Our EA models agents with distinct neuron information routes, evaluated via alternating gating, and guided by dopamine-driven plasticity. This model draws inspiration from various biological mechanisms, such as dopamine function, dendritic spine meta-plasticity, memory replay, and cooperative synaptic plasticity within dendritic neighborhoods. Neural networks trained with this model recapitulate brain-like dynamics during cognition. Our method effectively trains spiking and analog neural networks in both feedforward and recurrent architectures, it also achieves performance in tasks like MNIST classification and Atari games comparable to gradient-based methods. Overall, this research extends training approaches for biophysical neuron models, offering a robust alternative to traditional algorithms.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 5","pages":"Article 112340"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225006017","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Training biophysical neuron models provides insights into brain circuits’ organization and problem-solving capabilities. Traditional training methods like backpropagation face challenges with complex models due to instability and gradient issues. We explore evolutionary algorithms (EAs) combined with heterosynaptic plasticity as a gradient-free alternative. Our EA models agents with distinct neuron information routes, evaluated via alternating gating, and guided by dopamine-driven plasticity. This model draws inspiration from various biological mechanisms, such as dopamine function, dendritic spine meta-plasticity, memory replay, and cooperative synaptic plasticity within dendritic neighborhoods. Neural networks trained with this model recapitulate brain-like dynamics during cognition. Our method effectively trains spiking and analog neural networks in both feedforward and recurrent architectures, it also achieves performance in tasks like MNIST classification and Atari games comparable to gradient-based methods. Overall, this research extends training approaches for biophysical neuron models, offering a robust alternative to traditional algorithms.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.