Jingyu Yan , Yifan Zhao , Chenying Cui , Lihong Zhou , Yurong Xu, Ziyang Bai, Kaifang Zhang, Jiahui Tong, Yingyu Liu, Lingxiang Sun, Meijun Du, Yanling Mi, Xing Wang, Xiuping Wu, Bing Li
{"title":"Dynamic multistage nanozyme hydrogel reprograms diabetic wound microenvironment: synergistic oxidative stress alleviation and mitochondrial restoration","authors":"Jingyu Yan , Yifan Zhao , Chenying Cui , Lihong Zhou , Yurong Xu, Ziyang Bai, Kaifang Zhang, Jiahui Tong, Yingyu Liu, Lingxiang Sun, Meijun Du, Yanling Mi, Xing Wang, Xiuping Wu, Bing Li","doi":"10.1016/j.mtbio.2025.101780","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic diabetic wounds remain a significant clinical challenge due to persistent bacterial infections, oxidative stress, impaired angiogenesis, and mitochondrial dysfunction. Traditional therapies often fail to address these interrelated pathological factors, highlighting the urgent need for innovative solutions. Here, we present a Mn-ZIF@GOx/BC (MZGB) hydrogel system, where Mn-ZIF@GOx (MZG) nanozymes are successfully integrated into a bacterial cellulose (BC) hydrogel via hydrogen bonding and electrostatic interactions. The MZGB hydrogel lowers wound pH by oxidizing excess glucose into gluconic acid. It exhibits strong ROS scavenging capabilities through its superoxide dismutase and catalase-like activities, while simultaneously providing oxygen. By restoring redox homeostasis, it protects mitochondrial function and enhances cellular energy metabolism. By reprogramming macrophages, MZGB creates a favorable immune microenvironment, significantly promoting angiogenesis through paracrine mechanisms. This facilitates cell-to-cell communication, forming a positive feedback loop. Moreover, MZGB demonstrates ROS-independent antibacterial properties. BC hydrogel ensures adhesion and moisture regulation, forming a protective barrier and maintaining an optimal wound environment. This multifunctional hydrogel represents a promising nanotherapeutic approach for efficiently treating diabetic wounds by precisely regulating the wound microenvironment.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"32 ","pages":"Article 101780"},"PeriodicalIF":8.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425003400","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic diabetic wounds remain a significant clinical challenge due to persistent bacterial infections, oxidative stress, impaired angiogenesis, and mitochondrial dysfunction. Traditional therapies often fail to address these interrelated pathological factors, highlighting the urgent need for innovative solutions. Here, we present a Mn-ZIF@GOx/BC (MZGB) hydrogel system, where Mn-ZIF@GOx (MZG) nanozymes are successfully integrated into a bacterial cellulose (BC) hydrogel via hydrogen bonding and electrostatic interactions. The MZGB hydrogel lowers wound pH by oxidizing excess glucose into gluconic acid. It exhibits strong ROS scavenging capabilities through its superoxide dismutase and catalase-like activities, while simultaneously providing oxygen. By restoring redox homeostasis, it protects mitochondrial function and enhances cellular energy metabolism. By reprogramming macrophages, MZGB creates a favorable immune microenvironment, significantly promoting angiogenesis through paracrine mechanisms. This facilitates cell-to-cell communication, forming a positive feedback loop. Moreover, MZGB demonstrates ROS-independent antibacterial properties. BC hydrogel ensures adhesion and moisture regulation, forming a protective barrier and maintaining an optimal wound environment. This multifunctional hydrogel represents a promising nanotherapeutic approach for efficiently treating diabetic wounds by precisely regulating the wound microenvironment.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).