Chiho Lim , Ryan Thomas Villarreal , Mansoor Nasir , Chiu Yu-Chin , Denny Yu
{"title":"REViVe: Development of a reactive environmental vigilance in-vehicle system to mitigate drowsiness-induced inattention during automated driving","authors":"Chiho Lim , Ryan Thomas Villarreal , Mansoor Nasir , Chiu Yu-Chin , Denny Yu","doi":"10.1016/j.aap.2025.108045","DOIUrl":null,"url":null,"abstract":"<div><div>With monotonous or conditionally automated driving conditions that may lead to the degradation of driver vigilance and increase the risk of drowsy driving, it is crucial to implement advanced systems that assist drivers in returning to a state of optimal driving readiness. While these systems have shown significant effects in reducing the risks related to drowsy driving, most warning systems heavily rely on auditory and visual sensory channels. These modalities are susceptible to “alarm fatigue” due to frequent and annoying alarms, which may lead drivers to ignore or deactivate the systems entirely, thus rendering them less suitable for preemptive cautionary warnings. To address these limitations, a Reactive Environmental Vigilance in-Vehicle (REViVe) system was developed to counteract driver drowsiness by utilizing alternative sensory modalities. A total of 35 drivers were divided into three condition groups: olfactory, climate, and control. To evaluate the effectiveness of the system, five dependent measurements were analyzed: time taken for PERCLOS to return to baseline and engagement index to measure salient effect; time interval between drowsiness events and peripheral detection task score difference to measure sustained arousal effect; and satisfaction rating to measure driver acceptability. Both the olfactory and climate REViVe systems showed potential as effective preemptive warnings compared to control. With REViVe, drowsy drivers quickly returned to an awake state and sustained vigilance significantly longer than control, while driver satisfaction was positive. Thus, the REViVe system provides a balanced solution for alert functionality and driving experience, suggesting a novel approach to designing preemptive warning systems.</div></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"217 ","pages":"Article 108045"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457525001319","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
With monotonous or conditionally automated driving conditions that may lead to the degradation of driver vigilance and increase the risk of drowsy driving, it is crucial to implement advanced systems that assist drivers in returning to a state of optimal driving readiness. While these systems have shown significant effects in reducing the risks related to drowsy driving, most warning systems heavily rely on auditory and visual sensory channels. These modalities are susceptible to “alarm fatigue” due to frequent and annoying alarms, which may lead drivers to ignore or deactivate the systems entirely, thus rendering them less suitable for preemptive cautionary warnings. To address these limitations, a Reactive Environmental Vigilance in-Vehicle (REViVe) system was developed to counteract driver drowsiness by utilizing alternative sensory modalities. A total of 35 drivers were divided into three condition groups: olfactory, climate, and control. To evaluate the effectiveness of the system, five dependent measurements were analyzed: time taken for PERCLOS to return to baseline and engagement index to measure salient effect; time interval between drowsiness events and peripheral detection task score difference to measure sustained arousal effect; and satisfaction rating to measure driver acceptability. Both the olfactory and climate REViVe systems showed potential as effective preemptive warnings compared to control. With REViVe, drowsy drivers quickly returned to an awake state and sustained vigilance significantly longer than control, while driver satisfaction was positive. Thus, the REViVe system provides a balanced solution for alert functionality and driving experience, suggesting a novel approach to designing preemptive warning systems.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.