Mohammad M Sedghi , Azizallah Izady , Ali Al-Maktoumi , Mingjie Chen , Hongbin Zhan
{"title":"Flow in a falaj (qanat) in an unconfined aquifer system considering the head loss inside the falaj, arbitrary trajectory of falaj, and areal recharge","authors":"Mohammad M Sedghi , Azizallah Izady , Ali Al-Maktoumi , Mingjie Chen , Hongbin Zhan","doi":"10.1016/j.advwatres.2025.104973","DOIUrl":null,"url":null,"abstract":"<div><div>A falaj (plural <em>aflaj</em>) (also known as qanat) is a type of horizontal or nearly horizontal well that extracts water from an aquifer by gravity. Despite their importance, aflaj with arbitrary trajectories has not yet been mathematically modeled. Moreover, the available analytical models do not include the effects of several head losses, including head loss inside the falaj due to friction with the inner falaj wall, change of flow direction from the aquifer to the falaj, acceleration due to a change in velocity and minor loss caused by change of the falaj direction. Driven by these knowledge gaps, this study aims to develop a semi-analytical solution for the discharge variations of a falaj with an arbitrary trajectory subjected to arbitrary areal recharge. To obtain the solution, the point sink/source solution of groundwater drawdown in an unconfined aquifer is modified to simulate the drawdown due to the specified flux line sink/source of arbitrary trajectory that is known as a snake well. Then, the specified-flux line sink/source solution is converted into an equivalent specified-head line sink/source via well-screen segmentation. Finally, the Darcy–Weisbach equation, along with equations associated with the minor head loss due to the change of flow direction, is employed to simulate the head variation inside the falaj. This study finds that the hydraulic diffusivity of the aquifer and the length of the falaj significantly affect discharge; the trajectory of the falaj affects its late-time discharge, and head loss in falaj tends to mask the influences of its geometric parameters. Furthermore, the presented model can be employed to determine if it is possible to reduce the discharge of a falaj during the wet season when the groundwater is not needed without affecting the dry season discharge.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"201 ","pages":"Article 104973"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170825000879","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
A falaj (plural aflaj) (also known as qanat) is a type of horizontal or nearly horizontal well that extracts water from an aquifer by gravity. Despite their importance, aflaj with arbitrary trajectories has not yet been mathematically modeled. Moreover, the available analytical models do not include the effects of several head losses, including head loss inside the falaj due to friction with the inner falaj wall, change of flow direction from the aquifer to the falaj, acceleration due to a change in velocity and minor loss caused by change of the falaj direction. Driven by these knowledge gaps, this study aims to develop a semi-analytical solution for the discharge variations of a falaj with an arbitrary trajectory subjected to arbitrary areal recharge. To obtain the solution, the point sink/source solution of groundwater drawdown in an unconfined aquifer is modified to simulate the drawdown due to the specified flux line sink/source of arbitrary trajectory that is known as a snake well. Then, the specified-flux line sink/source solution is converted into an equivalent specified-head line sink/source via well-screen segmentation. Finally, the Darcy–Weisbach equation, along with equations associated with the minor head loss due to the change of flow direction, is employed to simulate the head variation inside the falaj. This study finds that the hydraulic diffusivity of the aquifer and the length of the falaj significantly affect discharge; the trajectory of the falaj affects its late-time discharge, and head loss in falaj tends to mask the influences of its geometric parameters. Furthermore, the presented model can be employed to determine if it is possible to reduce the discharge of a falaj during the wet season when the groundwater is not needed without affecting the dry season discharge.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes