A review on corrosion modelling for submarine pipeline

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Ziheng Zhao, Mohammad Nishat Akhtar, Elmi Abu Bakar, Norizham Bin Abdul Razak
{"title":"A review on corrosion modelling for submarine pipeline","authors":"Ziheng Zhao,&nbsp;Mohammad Nishat Akhtar,&nbsp;Elmi Abu Bakar,&nbsp;Norizham Bin Abdul Razak","doi":"10.1016/j.asej.2025.103411","DOIUrl":null,"url":null,"abstract":"<div><div>Undersea pipelines are susceptible to corrosion, leading to resource loss and significant harm to the natural ecosystem. Hence, it is necessary to construct a corrosion model for detection and maintenance. This research primarily examines the existing literature on data-driven models utilising Machine Learning (ML) methods, particularly Artificial Neural Networks (NN’s) and also considers the models based on other theories to provide references for corrosion models. An initial stage involves analysing the main cause of corrosion and identifying the key factors contributing to this structural failure. Then, the review highlights the benefits of ML by listing their composition and current applications. Furthermore, the article analyses corrosion modelling using other methods and examines the potential avenues for optimisation that may provide to ML. Additionally, it considers the cost aspect and provides potential methods and suggestions for reducing costs. This review can serve as a valuable reference for researchers studying corrosive pipeline<!--> <!-->modelling.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 7","pages":"Article 103411"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925001522","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Undersea pipelines are susceptible to corrosion, leading to resource loss and significant harm to the natural ecosystem. Hence, it is necessary to construct a corrosion model for detection and maintenance. This research primarily examines the existing literature on data-driven models utilising Machine Learning (ML) methods, particularly Artificial Neural Networks (NN’s) and also considers the models based on other theories to provide references for corrosion models. An initial stage involves analysing the main cause of corrosion and identifying the key factors contributing to this structural failure. Then, the review highlights the benefits of ML by listing their composition and current applications. Furthermore, the article analyses corrosion modelling using other methods and examines the potential avenues for optimisation that may provide to ML. Additionally, it considers the cost aspect and provides potential methods and suggestions for reducing costs. This review can serve as a valuable reference for researchers studying corrosive pipeline modelling.
海底管道腐蚀模型研究进展
海底管道容易受到腐蚀,造成资源损失,对自然生态系统造成重大危害。因此,有必要建立一个用于检测和维护的腐蚀模型。本研究主要考察了利用机器学习(ML)方法,特别是人工神经网络(NN)的数据驱动模型的现有文献,并考虑了基于其他理论的模型,为腐蚀模型提供参考。初始阶段包括分析腐蚀的主要原因,并确定导致这种结构失效的关键因素。然后,通过列出机器学习的组成和当前应用来强调机器学习的好处。此外,本文使用其他方法分析腐蚀建模,并检查可能为ML提供的潜在优化途径。此外,它还考虑了成本方面,并提供了降低成本的潜在方法和建议。该综述可为腐蚀管道建模研究提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信