FogScheduler: A resource optimization framework for energy-efficient computing in fog environments

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Eyhab Al-Masri, Sri Vibhu Paruchuri
{"title":"FogScheduler: A resource optimization framework for energy-efficient computing in fog environments","authors":"Eyhab Al-Masri,&nbsp;Sri Vibhu Paruchuri","doi":"10.1016/j.iot.2025.101609","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid growth of Internet of Things (IoT) devices has created a pressing demand for fog computing, offering an effective alternative to the inherent constraints imposed by traditional cloud computing. Efficient resource management in fog environments remains challenging due to device heterogeneity, dynamic workloads, and conflicting performance objectives. This paper introduces FogScheduler, an innovative resource allocation algorithm that optimizes performance and energy efficiency in IoT-fog ecosystems using the TOPSIS method to rank resources based on attributes like MIPS, Thermal Design Power (TDP), memory bandwidth, and network latency. Experiments highlight FogScheduler's notable achievements, including a 46.1 % reduction in energy consumption in the best case compared to the Greedy Algorithm (GA) and a 45.6 % reduction in makespan compared to the First-Fit Algorithm (FFA). On average, FogScheduler achieves a 27 % reduction in energy consumption compared to FFA, demonstrating its consistent ability to optimize resource allocation. Even in worst-case scenarios, FogScheduler outperforms traditional algorithms, underscoring its robustness across varying resource contention levels. Results from our experiments demonstrate that FogScheduler is a highly effective solution for energy-aware and performance-optimized resource management, offering significant potential for IoT-fog-cloud ecosystems.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"32 ","pages":"Article 101609"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525001234","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth of Internet of Things (IoT) devices has created a pressing demand for fog computing, offering an effective alternative to the inherent constraints imposed by traditional cloud computing. Efficient resource management in fog environments remains challenging due to device heterogeneity, dynamic workloads, and conflicting performance objectives. This paper introduces FogScheduler, an innovative resource allocation algorithm that optimizes performance and energy efficiency in IoT-fog ecosystems using the TOPSIS method to rank resources based on attributes like MIPS, Thermal Design Power (TDP), memory bandwidth, and network latency. Experiments highlight FogScheduler's notable achievements, including a 46.1 % reduction in energy consumption in the best case compared to the Greedy Algorithm (GA) and a 45.6 % reduction in makespan compared to the First-Fit Algorithm (FFA). On average, FogScheduler achieves a 27 % reduction in energy consumption compared to FFA, demonstrating its consistent ability to optimize resource allocation. Even in worst-case scenarios, FogScheduler outperforms traditional algorithms, underscoring its robustness across varying resource contention levels. Results from our experiments demonstrate that FogScheduler is a highly effective solution for energy-aware and performance-optimized resource management, offering significant potential for IoT-fog-cloud ecosystems.
FogScheduler:用于雾环境中节能计算的资源优化框架
物联网(IoT)设备的快速增长创造了对雾计算的迫切需求,为传统云计算施加的固有限制提供了有效的替代方案。由于设备异构性、动态工作负载和相互冲突的性能目标,雾环境中的有效资源管理仍然具有挑战性。本文介绍了FogScheduler,这是一种创新的资源分配算法,使用TOPSIS方法根据MIPS、热设计功率(TDP)、内存带宽和网络延迟等属性对资源进行排名,优化物联网雾生态系统的性能和能源效率。实验突出了FogScheduler的显著成就,包括与贪婪算法(GA)相比,在最佳情况下能耗降低46.1%,与首拟合算法(FFA)相比,完工时间降低45.6%。与FFA相比,FogScheduler的平均能耗降低了27%,证明了其优化资源分配的一贯能力。即使在最坏的情况下,FogScheduler也优于传统算法,强调了其在不同资源争用级别上的鲁棒性。我们的实验结果表明,FogScheduler是能源感知和性能优化资源管理的高效解决方案,为物联网-雾云生态系统提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信