Xiaomin Wang , Lei Wang , Duan Li , Yilong Liu , Qi Shang , Yanling Liu , Leyi Zhang , Zheng Xu , Cuiqin Huang , Changxu Song
{"title":"HDAC4 suppresses porcine epidemic diarrhea virus infection through negatively regulating MEF2A-GLUT1/3 axis- mediated glucose uptake","authors":"Xiaomin Wang , Lei Wang , Duan Li , Yilong Liu , Qi Shang , Yanling Liu , Leyi Zhang , Zheng Xu , Cuiqin Huang , Changxu Song","doi":"10.1016/j.vetmic.2025.110520","DOIUrl":null,"url":null,"abstract":"<div><div>Porcine epidemic diarrhea virus (PEDV), a porcine enteropathogenic coronavirus, causes severe diarrhea and death in neonatal piglets. Histone deacetylase 4 (HDAC4), a member of class IIa deacetylases, controls a wide range of physiological processes, but, little is known about its role in PEDV infection. Here, we report a novel strategy by which PEDV manipulates HDAC4. First, HDAC4 expression was examined, and showed a significant down-regulation in PEDV-infected Vero and IPEC-J2 cells. Subsequently, knockdown of HDAC4 by specific small interfering RNA (siRNA) led to an increase in viral infection, whereas overexpression of HDAC4 remarkably suppressed PEDV infection. Mechanistically, we showed that HDAC4 significantly reduced glucose uptake, as glucose is required for PEDV infection. Through screening, we identified glucose transporters 1 and 3 (GLUT1 and GLUT3) as responsible for glucose uptake during PEDV infection. We further confirmed that HDAC4 regulated GLUT1 and GLUT3 expression through its converging hub, myocyte enhancer factor 2 A (MEF2A). Taken together, these findings contribute to a better understanding of a novel function of HDAC4 in regulating glucose uptake via MEF2A-GLUT1/3 to limit PEDV infection, and provide new strategies for the development of anti-PEDV drugs.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"305 ","pages":"Article 110520"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525001555","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Porcine epidemic diarrhea virus (PEDV), a porcine enteropathogenic coronavirus, causes severe diarrhea and death in neonatal piglets. Histone deacetylase 4 (HDAC4), a member of class IIa deacetylases, controls a wide range of physiological processes, but, little is known about its role in PEDV infection. Here, we report a novel strategy by which PEDV manipulates HDAC4. First, HDAC4 expression was examined, and showed a significant down-regulation in PEDV-infected Vero and IPEC-J2 cells. Subsequently, knockdown of HDAC4 by specific small interfering RNA (siRNA) led to an increase in viral infection, whereas overexpression of HDAC4 remarkably suppressed PEDV infection. Mechanistically, we showed that HDAC4 significantly reduced glucose uptake, as glucose is required for PEDV infection. Through screening, we identified glucose transporters 1 and 3 (GLUT1 and GLUT3) as responsible for glucose uptake during PEDV infection. We further confirmed that HDAC4 regulated GLUT1 and GLUT3 expression through its converging hub, myocyte enhancer factor 2 A (MEF2A). Taken together, these findings contribute to a better understanding of a novel function of HDAC4 in regulating glucose uptake via MEF2A-GLUT1/3 to limit PEDV infection, and provide new strategies for the development of anti-PEDV drugs.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.