The Hunt for the Putative Epoxyeicosatrienoic Acid Receptor

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
William R. Arnold, Sona Jain, Vidya Sinha and Aditi Das*, 
{"title":"The Hunt for the Putative Epoxyeicosatrienoic Acid Receptor","authors":"William R. Arnold,&nbsp;Sona Jain,&nbsp;Vidya Sinha and Aditi Das*,&nbsp;","doi":"10.1021/acschembio.5c0004710.1021/acschembio.5c00047","DOIUrl":null,"url":null,"abstract":"<p >Epoxyeicosatrienoic acids, or EETs, are signaling molecules formed by the metabolism of arachidonic acid by cytochrome P450 enzymes. They are well-known for their anti-inflammatory effects, their ability to lower blood pressure, and benefits to cardiovascular outcomes. Despite the wealth of data demonstrating their physiological benefits, the putative high-affinity receptor that mediates these effects is yet to be identified. The recent report that the sphingosine-1-phosphate receptor 1 (S1PR1) is a high-affinity receptor for a related epoxy lipid prompted us to ask, “Why has the putative EET receptor not been discovered yet? What information about the discoveries of lipid epoxide receptors can help us identify the putative EET receptor?” In this review, we summarize the evidence supporting that the putative EET receptor exists. We then review the data showing EETs binding to other, low-affinity receptors and the discovery of receptors for similar lipid metabolites that can serve as a model for identifying the putative EET receptor. We hope this review will revitalize the search for this important receptor, which can facilitate the development of anti-inflammatory and cardiovascular therapeutics.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"20 4","pages":"762–777 762–777"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acschembio.5c00047","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschembio.5c00047","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epoxyeicosatrienoic acids, or EETs, are signaling molecules formed by the metabolism of arachidonic acid by cytochrome P450 enzymes. They are well-known for their anti-inflammatory effects, their ability to lower blood pressure, and benefits to cardiovascular outcomes. Despite the wealth of data demonstrating their physiological benefits, the putative high-affinity receptor that mediates these effects is yet to be identified. The recent report that the sphingosine-1-phosphate receptor 1 (S1PR1) is a high-affinity receptor for a related epoxy lipid prompted us to ask, “Why has the putative EET receptor not been discovered yet? What information about the discoveries of lipid epoxide receptors can help us identify the putative EET receptor?” In this review, we summarize the evidence supporting that the putative EET receptor exists. We then review the data showing EETs binding to other, low-affinity receptors and the discovery of receptors for similar lipid metabolites that can serve as a model for identifying the putative EET receptor. We hope this review will revitalize the search for this important receptor, which can facilitate the development of anti-inflammatory and cardiovascular therapeutics.

寻找假定的环氧二碳三烯酸受体
环氧二碳三烯酸是由细胞色素P450酶代谢花生四烯酸形成的信号分子。众所周知,它们具有抗炎作用、降低血压的能力以及对心血管疾病的益处。尽管有大量数据表明它们的生理益处,但介导这些作用的高亲和力受体尚未被确定。最近有报道称鞘氨醇-1-磷酸受体1 (S1PR1)是一种与环氧脂相关的高亲和力受体,这促使我们问:“为什么假定的EET受体尚未被发现?”关于脂质环氧化物受体的发现的哪些信息可以帮助我们确定假定的EET受体?”在这篇综述中,我们总结了支持假设EET受体存在的证据。然后,我们回顾了显示EET与其他低亲和力受体结合的数据,并发现了类似脂质代谢物的受体,这些受体可以作为识别假定的EET受体的模型。我们希望这篇综述将重振对这一重要受体的研究,这可以促进抗炎和心血管治疗的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信