Daniel Marcos-Atanes, Gonzalo Jiménez-Osés, José L. Mascareñas
{"title":"Bis-CF3-bipyridine Ligands for the Iridium-Catalyzed Borylation of N-Methylamides","authors":"Daniel Marcos-Atanes, Gonzalo Jiménez-Osés, José L. Mascareñas","doi":"10.1021/acscatal.5c00933","DOIUrl":null,"url":null,"abstract":"Bipyridine and phenanthroline are well-established neutral ligands for promoting iridium-catalyzed borylations of aromatic C–H bonds. However, their use with aliphatic substrates is almost uncharted. Herein we demonstrate that introducing CF substituents at the 5- and 5′-positions of bipyridine generates ligands that enable an efficient and regioselective iridium-catalyzed borylation of the methyl group in a broad variety of methylamides. The reaction shows broad functional group tolerance and exhibits remarkable selectivity, offering a powerful approach for the borylation of challenging aliphatic C–H bonds. Mechanistic investigations, including computational analysis, suggest that the accelerating effect of the ligand is likely associated with the formation of non-covalent dispersion interactions between the carbonyl amide of the substrates and the trifluoromethylated pyridine rings of the ligand.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"67 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.5c00933","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bipyridine and phenanthroline are well-established neutral ligands for promoting iridium-catalyzed borylations of aromatic C–H bonds. However, their use with aliphatic substrates is almost uncharted. Herein we demonstrate that introducing CF substituents at the 5- and 5′-positions of bipyridine generates ligands that enable an efficient and regioselective iridium-catalyzed borylation of the methyl group in a broad variety of methylamides. The reaction shows broad functional group tolerance and exhibits remarkable selectivity, offering a powerful approach for the borylation of challenging aliphatic C–H bonds. Mechanistic investigations, including computational analysis, suggest that the accelerating effect of the ligand is likely associated with the formation of non-covalent dispersion interactions between the carbonyl amide of the substrates and the trifluoromethylated pyridine rings of the ligand.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.