Efficient Kinetic Separation of Carbon Dioxide from Acetylene Using Mordenites Featuring Modified 1D Channels with Excellent Selectivity and Diffusion

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xianming Zhang, Yi Wang, Lifeng Yang, Xiaofei Lu, Xian Suo, Xili Cui, Huabin Xing
{"title":"Efficient Kinetic Separation of Carbon Dioxide from Acetylene Using Mordenites Featuring Modified 1D Channels with Excellent Selectivity and Diffusion","authors":"Xianming Zhang, Yi Wang, Lifeng Yang, Xiaofei Lu, Xian Suo, Xili Cui, Huabin Xing","doi":"10.1002/adma.202501870","DOIUrl":null,"url":null,"abstract":"The design of physical adsorbents for a precise recognition of gas molecules with similar kinetic sizes is of importance as adsorptive separation can serve as an alternative to energy-intensive distillation processes. However, it is challenging to balance the selectivity, capacity, and adsorption kinetics of the adsorbents. Herein, an efficient kinetic separation of acetylene and carbon dioxide is reported, which have nearly identical kinetic sizes, achieved through modification of the one-dimensional (1D) channels of a micrometer-sized mordenite. Under ambient conditions, the weak acid salt-modified mordenite denoted as NaAlO<sub>2</sub>@MOR(0.5), exhibits a remarkable kinetic separation selectivity of 534.3 while retaining an excellent diffusivity for CO<sub>2</sub>. Compared to other adsorbent materials, its dynamic column performance for carbon dioxide significantly exceeds those of molecular sieve materials. In terms of separation selectivity, it is superior to thermodynamic separation adsorbents. The high efficiency of NaAlO<sub>2</sub>@MOR(0.5) in CO<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> kinetic separation is validated by column breakthrough experiments. Furthermore, NaAlO<sub>2</sub>@MOR(0.5) has a low cost and high thermal stability. This study can guide the design of adsorbents that balance selectivity, capacity, and gas diffusivity, to provide a highly efficient kinetic separation of gas molecules with similar kinetic diameters.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"65 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202501870","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The design of physical adsorbents for a precise recognition of gas molecules with similar kinetic sizes is of importance as adsorptive separation can serve as an alternative to energy-intensive distillation processes. However, it is challenging to balance the selectivity, capacity, and adsorption kinetics of the adsorbents. Herein, an efficient kinetic separation of acetylene and carbon dioxide is reported, which have nearly identical kinetic sizes, achieved through modification of the one-dimensional (1D) channels of a micrometer-sized mordenite. Under ambient conditions, the weak acid salt-modified mordenite denoted as NaAlO2@MOR(0.5), exhibits a remarkable kinetic separation selectivity of 534.3 while retaining an excellent diffusivity for CO2. Compared to other adsorbent materials, its dynamic column performance for carbon dioxide significantly exceeds those of molecular sieve materials. In terms of separation selectivity, it is superior to thermodynamic separation adsorbents. The high efficiency of NaAlO2@MOR(0.5) in CO2/C2H2 kinetic separation is validated by column breakthrough experiments. Furthermore, NaAlO2@MOR(0.5) has a low cost and high thermal stability. This study can guide the design of adsorbents that balance selectivity, capacity, and gas diffusivity, to provide a highly efficient kinetic separation of gas molecules with similar kinetic diameters.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信