Supervariate Gel Transforms into Various Biominerals in Salt Solutions

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinxue Tang, Chong Wang, Yuk-Tong Cheng, Junda Shen, Yunchen Long, Hongkun Li, Jie Yan, Yang Ren, Xiao Ma, Yufeng Huang, Zhengtao Xu, Jian Lu, Yang Yang Li
{"title":"Supervariate Gel Transforms into Various Biominerals in Salt Solutions","authors":"Xinxue Tang, Chong Wang, Yuk-Tong Cheng, Junda Shen, Yunchen Long, Hongkun Li, Jie Yan, Yang Ren, Xiao Ma, Yufeng Huang, Zhengtao Xu, Jian Lu, Yang Yang Li","doi":"10.1002/adfm.202504321","DOIUrl":null,"url":null,"abstract":"It is disclosed that calcium-based biominerals, particularly hydroxyapatite (as in vertebrate bones and teeth), calcium carbonate (as in plankton and corals), and calcium pyrophosphate (as the cause for pseudogout), can be mineralized from the same precursor—“supervariate” gel, a stable and non-toxic amorphous gel easily prepared by mixing common water-soluble inorganic salt. When dispersed in a Na<sub>2</sub>CO<sub>3</sub> or K<sub>2</sub>HPO<sub>4</sub> solution, this multi-ionic, “supervariate” gel can selectively form the biomineral calcite (CaCO<sub>3</sub>) or hydroxyapatite, respectively. More remarkable reactions happen when the gel is dispersed in a CaCl<sub>2</sub> solution under ambient conditions: dihydrate calcium pyrophosphate (Ca<sub>2</sub>P<sub>2</sub>O<sub>7</sub>·2H<sub>2</sub>O, CPP) is produced in the morphologically intact gel matrix. The resulting gel further transforms into hydroxyapatite upon drying at room temperature. Because of the ubiquity of pyrophosphate in organisms, such mild formation of calcium pyrophosphate dihydrate (contrasting the high temperatures needed in other non-enzymatic procedures, e.g., as in condensing phosphoric acid), and its transformation into hydroxyapatite, sheds light on 1) the role of pyrophosphate in life's origin; 2) key biomineralization mechanisms in physiological processes. This “supervariate” gel is also applied for dental repair and osteogenesis.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"108 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202504321","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is disclosed that calcium-based biominerals, particularly hydroxyapatite (as in vertebrate bones and teeth), calcium carbonate (as in plankton and corals), and calcium pyrophosphate (as the cause for pseudogout), can be mineralized from the same precursor—“supervariate” gel, a stable and non-toxic amorphous gel easily prepared by mixing common water-soluble inorganic salt. When dispersed in a Na2CO3 or K2HPO4 solution, this multi-ionic, “supervariate” gel can selectively form the biomineral calcite (CaCO3) or hydroxyapatite, respectively. More remarkable reactions happen when the gel is dispersed in a CaCl2 solution under ambient conditions: dihydrate calcium pyrophosphate (Ca2P2O7·2H2O, CPP) is produced in the morphologically intact gel matrix. The resulting gel further transforms into hydroxyapatite upon drying at room temperature. Because of the ubiquity of pyrophosphate in organisms, such mild formation of calcium pyrophosphate dihydrate (contrasting the high temperatures needed in other non-enzymatic procedures, e.g., as in condensing phosphoric acid), and its transformation into hydroxyapatite, sheds light on 1) the role of pyrophosphate in life's origin; 2) key biomineralization mechanisms in physiological processes. This “supervariate” gel is also applied for dental repair and osteogenesis.

Abstract Image

超多元凝胶在盐溶液中转化为各种生物矿物质
公开了钙基生物矿物,特别是羟基磷灰石(如在脊椎动物骨骼和牙齿中),碳酸钙(如在浮游生物和珊瑚中)和焦磷酸钙(作为假性昏迷的原因),可以从相同的前体-“超多元”凝胶中矿化,这是一种稳定无毒的无定形凝胶,通过混合常见的水溶性无机盐容易制备。当分散在Na2CO3或K2HPO4溶液中时,这种多离子“超多元”凝胶可以分别选择性地形成生物矿物方解石(CaCO3)或羟基磷灰石。当凝胶在环境条件下分散在CaCl2溶液中时,会发生更显著的反应:在形态完整的凝胶基质中产生二水焦磷酸钙(Ca2P2O7·2H2O, CPP)。所得凝胶在室温下干燥后进一步转化为羟基磷灰石。由于焦磷酸盐在生物体中无处不在,焦磷酸钙二水合物的温和形成(与其他非酶过程所需的高温形成对比,例如,在凝聚磷酸中),并将其转化为羟基磷灰石,揭示了焦磷酸盐在生命起源中的作用;2)生理过程中的关键生物矿化机制。这种“超多元”凝胶也用于牙齿修复和成骨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信