Jie Pan, Jieyu Wang, Dawei Zhou, Yang Hang, Yu Su, Shuo Wang, Zilong Mao, Linbo Feng, Shuai Yang, Chao Liu, Yao Yin, Yan Lv, Junran Zhang, Lin Wang
{"title":"Electrical Control of Perovskite Light Emission by Integration into a Two-Dimensional Transistor","authors":"Jie Pan, Jieyu Wang, Dawei Zhou, Yang Hang, Yu Su, Shuo Wang, Zilong Mao, Linbo Feng, Shuai Yang, Chao Liu, Yao Yin, Yan Lv, Junran Zhang, Lin Wang","doi":"10.1021/acs.nanolett.5c01010","DOIUrl":null,"url":null,"abstract":"Perovskites have emerged as a rising material category for highly efficient light emission, the electrical control of which is crucial for practical applications. However, achieving efficient, precise, wide-range, and rich control remains challenging due to their inherently poor electrical conductivity. In this work, we demonstrate the integration of two-dimensional (2D) transistors to assist the electrical control of perovskite light-emission. The implementation of a 2D channel with tunable electronic properties and strong interfacial coupling provides an effective bridge between electrical control and light emission of perovskite. The photoluminescence (PL) can be efficiently modulated with a small bias voltage of just 0.2 V, achieving a modulation efficiency of ∼87% per voltage. Furthermore, the PL enhancement can reach up to ∼700% with the assistance of gate voltage. This study underscores the promise of 2D transistors as a low-power, high-efficiency, and highly integrated platform for tailoring the optoelectronic properties of perovskites.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"75 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01010","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskites have emerged as a rising material category for highly efficient light emission, the electrical control of which is crucial for practical applications. However, achieving efficient, precise, wide-range, and rich control remains challenging due to their inherently poor electrical conductivity. In this work, we demonstrate the integration of two-dimensional (2D) transistors to assist the electrical control of perovskite light-emission. The implementation of a 2D channel with tunable electronic properties and strong interfacial coupling provides an effective bridge between electrical control and light emission of perovskite. The photoluminescence (PL) can be efficiently modulated with a small bias voltage of just 0.2 V, achieving a modulation efficiency of ∼87% per voltage. Furthermore, the PL enhancement can reach up to ∼700% with the assistance of gate voltage. This study underscores the promise of 2D transistors as a low-power, high-efficiency, and highly integrated platform for tailoring the optoelectronic properties of perovskites.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.