{"title":"Advancing Self-Powered Devices with Novel MXene/Graphene Oxide/Siloxene Frameworks on Textiles: Bridging Chemistry and Sustainability","authors":"Aamir Rasheed, Sara Ajmal, Wen He, Seung Goo Lee, Ghulam Dastgeer, Haonan Zhang, Leilei Shu, Dae Joon Kang, Peng Li, Mingzai Wu, Peihong Wang","doi":"10.1021/acs.nanolett.5c00288","DOIUrl":null,"url":null,"abstract":"Recent advancements in self-charging power devices highlight the potential of dielectric nanofillers in polymer matrixes to improve the performance of microsupercapacitor–triboelectric nanogenerator (TENG) integrated devices. However, achieving homogeneous dispersion of nanofillers into polymer matrixes remains a key bottleneck, often leading to inconsistent performance, reduced stability, and lower energy efficiency. This work presents an innovative chemical functionalization strategy covalently knitting MXene/graphene oxide (GO)/siloxene and MXene/reduced GO/siloxene networks into textile substrates, resulting in a consistent output performance and the development of a durable device. The single-electrode TENG delivered an output voltage of 380 V, a current density of 6.3 μA/cm<sup>2</sup>, a power density of 627 μW/cm<sup>2</sup>, and the transfer of 0.55 ± 0.03 μC of charge. The integrated device charged a voltage of 2.4 V after 110 s of continuous hand tapping, powering smart electronics. These results showcase the potential of chemically engineered heterostructures to address longstanding challenges in self-charging devices.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"13 34 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00288","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in self-charging power devices highlight the potential of dielectric nanofillers in polymer matrixes to improve the performance of microsupercapacitor–triboelectric nanogenerator (TENG) integrated devices. However, achieving homogeneous dispersion of nanofillers into polymer matrixes remains a key bottleneck, often leading to inconsistent performance, reduced stability, and lower energy efficiency. This work presents an innovative chemical functionalization strategy covalently knitting MXene/graphene oxide (GO)/siloxene and MXene/reduced GO/siloxene networks into textile substrates, resulting in a consistent output performance and the development of a durable device. The single-electrode TENG delivered an output voltage of 380 V, a current density of 6.3 μA/cm2, a power density of 627 μW/cm2, and the transfer of 0.55 ± 0.03 μC of charge. The integrated device charged a voltage of 2.4 V after 110 s of continuous hand tapping, powering smart electronics. These results showcase the potential of chemically engineered heterostructures to address longstanding challenges in self-charging devices.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.