Shangxiang Lai, Yunshuai Huang, Yumei Liu, Fengqing Han, Mu Zhuang, Xia Cui, Zhansheng Li
{"title":"Clubroot Resistant in Cruciferous Crops: Recent Advances in Genes and QTLs Identification and Utilization","authors":"Shangxiang Lai, Yunshuai Huang, Yumei Liu, Fengqing Han, Mu Zhuang, Xia Cui, Zhansheng Li","doi":"10.1093/hr/uhaf105","DOIUrl":null,"url":null,"abstract":"Clubroot, caused by Plasmodiophora brassicae (P. brassicae), poses a serious threat to cruciferous crop production worldwide. Breeding resistant varieties remains the most cost-effective strategy to mitigate yield losses, yet achieving durable, stable, and broad-spectrum resistance continues to be a formidable challenge. Recent advances in genetic and genomic technologies have improved the understanding of complex host–pathogen interactions, leading to the identification of key resistance loci, including dominant resistance genes such as CRa and Crr1, as well as quantitative trait loci (QTLs). This review discusses the genetic mechanisms governing clubroot resistance and highlights applications in breeding, such as marker-assisted selection (MAS) and CRISPR/Cas9-based genome editing, which are accelerating the development of resistant germplasm. Furthermore, integrated management strategies—encompassing resistant cultivars, crop rotation, biocontrol agents, and soil amendments—are emphasized as critical components for sustainable disease. This review summarizes the major resistance genes against clubroot and discusses potential strategies to address the persistent threat posed by the disease.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"15 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf105","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Clubroot, caused by Plasmodiophora brassicae (P. brassicae), poses a serious threat to cruciferous crop production worldwide. Breeding resistant varieties remains the most cost-effective strategy to mitigate yield losses, yet achieving durable, stable, and broad-spectrum resistance continues to be a formidable challenge. Recent advances in genetic and genomic technologies have improved the understanding of complex host–pathogen interactions, leading to the identification of key resistance loci, including dominant resistance genes such as CRa and Crr1, as well as quantitative trait loci (QTLs). This review discusses the genetic mechanisms governing clubroot resistance and highlights applications in breeding, such as marker-assisted selection (MAS) and CRISPR/Cas9-based genome editing, which are accelerating the development of resistant germplasm. Furthermore, integrated management strategies—encompassing resistant cultivars, crop rotation, biocontrol agents, and soil amendments—are emphasized as critical components for sustainable disease. This review summarizes the major resistance genes against clubroot and discusses potential strategies to address the persistent threat posed by the disease.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.