High-Throughput, Unbiased Single-Molecule Displacement Mapping with Deep Learning Reveals Spatiotemporal Heterogeneities in Intracellular Diffusivity

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiankai Xia, Yi He, Zhipeng Zhang, Jinhong Yan, Ruirong Wang, Mingxuan Tang, Jingye Chen, Jun Fan, Kun Chen
{"title":"High-Throughput, Unbiased Single-Molecule Displacement Mapping with Deep Learning Reveals Spatiotemporal Heterogeneities in Intracellular Diffusivity","authors":"Jiankai Xia, Yi He, Zhipeng Zhang, Jinhong Yan, Ruirong Wang, Mingxuan Tang, Jingye Chen, Jun Fan, Kun Chen","doi":"10.1021/acsphotonics.5c00312","DOIUrl":null,"url":null,"abstract":"Single-molecule displacement/diffusivity mapping (SM<i>d</i>M) has revolutionized the study of molecular motion in live cells by providing high spatial resolution insights. However, its utility is restricted by measurement biases and low throughput, making it challenging to capture temporal dynamics of intracellular diffusivity. Here we report a high-throughput single-molecule diffusivity microscopy approach (Hi-SM<i>d</i>M) that rapidly and unbiasedly maps nanoscale heterogeneities in molecular motion inside mammalian cells, enabling time-resolved imaging of local diffusivity dynamics. Hi-SM<i>d</i>M employs a self-supervised deep-learning denoising framework with a general noise model to effectively restore the scarce signals of fast-moving single molecules, while eliminating artifact motions without relying on spatial redundancies or temporal correlations. It then provides unbiased estimations of the nanoscale diffusion coefficient and improves both throughput and temporal resolution by up to an order of magnitude. We demonstrate the versatility of Hi-SM<i>d</i>M through time-resolved mapping of the spatially heterogeneous diffusivity of free proteins in the cytoplasm. Hi-SM<i>d</i>M also unveils the temporal dynamics of intracellular diffusion under hypotonic conditions in live cells. Additionally, Hi-SM<i>d</i>M tracks the spatiotemporal dynamics of intraorganellar diffusivity during rapid rearrangements of the ER network and functional activities of mitochondria. Overall, Hi-SM<i>d</i>M provides exceptional opportunities for high-throughput and unbiased single-molecule diffusivity mapping with excellent spatiotemporal resolution.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"6 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.5c00312","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-molecule displacement/diffusivity mapping (SMdM) has revolutionized the study of molecular motion in live cells by providing high spatial resolution insights. However, its utility is restricted by measurement biases and low throughput, making it challenging to capture temporal dynamics of intracellular diffusivity. Here we report a high-throughput single-molecule diffusivity microscopy approach (Hi-SMdM) that rapidly and unbiasedly maps nanoscale heterogeneities in molecular motion inside mammalian cells, enabling time-resolved imaging of local diffusivity dynamics. Hi-SMdM employs a self-supervised deep-learning denoising framework with a general noise model to effectively restore the scarce signals of fast-moving single molecules, while eliminating artifact motions without relying on spatial redundancies or temporal correlations. It then provides unbiased estimations of the nanoscale diffusion coefficient and improves both throughput and temporal resolution by up to an order of magnitude. We demonstrate the versatility of Hi-SMdM through time-resolved mapping of the spatially heterogeneous diffusivity of free proteins in the cytoplasm. Hi-SMdM also unveils the temporal dynamics of intracellular diffusion under hypotonic conditions in live cells. Additionally, Hi-SMdM tracks the spatiotemporal dynamics of intraorganellar diffusivity during rapid rearrangements of the ER network and functional activities of mitochondria. Overall, Hi-SMdM provides exceptional opportunities for high-throughput and unbiased single-molecule diffusivity mapping with excellent spatiotemporal resolution.

Abstract Image

利用深度学习绘制高通量、无偏差的单分子位移图揭示细胞内扩散的时空异质性
单分子位移/扩散映射(SMdM)通过提供高空间分辨率的见解,彻底改变了活细胞中分子运动的研究。然而,它的效用受到测量偏差和低通量的限制,使得捕捉细胞内扩散率的时间动态具有挑战性。在这里,我们报告了一种高通量单分子扩散显微镜方法(Hi-SMdM),该方法可以快速、无偏地绘制哺乳动物细胞内分子运动的纳米级异质性,从而实现局部扩散动力学的时间分辨成像。Hi-SMdM采用具有一般噪声模型的自监督深度学习去噪框架,有效地恢复快速运动的单个分子的稀缺信号,同时消除伪影运动,而不依赖于空间冗余或时间相关性。然后,它提供了纳米级扩散系数的无偏估计,并将吞吐量和时间分辨率提高了一个数量级。我们通过对细胞质中自由蛋白的空间异质性扩散率的时间分辨映射证明了Hi-SMdM的多功能性。Hi-SMdM还揭示了活细胞低渗条件下细胞内扩散的时间动态。此外,Hi-SMdM追踪内质网快速重排和线粒体功能活动过程中细胞器内扩散的时空动态。总的来说,Hi-SMdM为高通量和无偏单分子扩散率映射提供了绝佳的机会,具有出色的时空分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信