Hanna Bandarenka, Davoud Adinehloo, Evgenii Oskolkov, Andrey Kuzmin, Artem Pliss, Onoruoiza David Shaibu, Jonathan Bird, Alexander Baev, Vasili Perebeinos, Paras N. Prasad
{"title":"Third-Harmonic Generation Imaging of Local Doping, Mechanical Stress, and Stray Electric Fields in Silicon Microchips","authors":"Hanna Bandarenka, Davoud Adinehloo, Evgenii Oskolkov, Andrey Kuzmin, Artem Pliss, Onoruoiza David Shaibu, Jonathan Bird, Alexander Baev, Vasili Perebeinos, Paras N. Prasad","doi":"10.1021/acsphotonics.4c01924","DOIUrl":null,"url":null,"abstract":"We employ third-harmonic generation (THG) imaging for noninvasive characterization of silicon wafers and microchips and demonstrate that a much higher contrast can be achieved in THG compared to reflection imaging. In particular, the THG signal clearly distinguishes between n-type and p-type silicon samples coated with native silicon dioxide, which were indistinguishable in the reflection imaging mode. The THG response showed a higher contrast in mechanically stressed samples and under in-plane electric fields. Our experimental results, supported by first-principles calculations, demonstrate that THG imaging is a robust tool for assessing doping, mechanical stress, and electric fields in silicon-based structures, offering significant potential for advanced semiconductor diagnostics and the development of next-generation electronic components.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"108 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01924","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We employ third-harmonic generation (THG) imaging for noninvasive characterization of silicon wafers and microchips and demonstrate that a much higher contrast can be achieved in THG compared to reflection imaging. In particular, the THG signal clearly distinguishes between n-type and p-type silicon samples coated with native silicon dioxide, which were indistinguishable in the reflection imaging mode. The THG response showed a higher contrast in mechanically stressed samples and under in-plane electric fields. Our experimental results, supported by first-principles calculations, demonstrate that THG imaging is a robust tool for assessing doping, mechanical stress, and electric fields in silicon-based structures, offering significant potential for advanced semiconductor diagnostics and the development of next-generation electronic components.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.