Galectin-13 reduces membrane localization of SLC7A11 for ferroptosis propagation

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hai-Liang Zhang, Yi-Qing Guo, Shan Liu, Zhi-Peng Ye, Li-Chao Li, Bing-Xin Hu, Zhi-Ling Li, Yu-Hong Chen, Gong-Kan Feng, Hui-Qi Shen, Rong Deng, Xiao-Feng Zhu
{"title":"Galectin-13 reduces membrane localization of SLC7A11 for ferroptosis propagation","authors":"Hai-Liang Zhang, Yi-Qing Guo, Shan Liu, Zhi-Peng Ye, Li-Chao Li, Bing-Xin Hu, Zhi-Ling Li, Yu-Hong Chen, Gong-Kan Feng, Hui-Qi Shen, Rong Deng, Xiao-Feng Zhu","doi":"10.1038/s41589-025-01888-2","DOIUrl":null,"url":null,"abstract":"<p>The mechanism of ferroptosis propagation is still unclear. Here our results indicate that the cells undergoing ferroptosis secrete Galectin-13, which binds to CD44 and inhibits the plasma membrane localization of SLC7A11 in neighboring cells, thereby accelerating neighboring cell death and promoting ferroptosis propagation. FOXK1 was phosphorylated by PKCβII and then facilitated the expression and secretion of Galectin-13 during ferroptotic cell death. Correlation analysis and functional analysis revealed that ferroptosis propagation ability was a previously unrecognized determinant of ferroptosis sensitivity in human cancer cells. A synthetic Galectin-13 mimetic peptide was shown to strongly enhance the sensitivity of tumors to the imidazole ketone erastin, radiotherapy and immunotherapy by boosting ferroptosis. In particular, cancer stem cells were vulnerable to the combination of Galectin-13 mimetic peptide and ferroptosis inducers. Our study provides new insights into ferroptosis propagation and highlights novel strategies for targeting ferroptosis to treat tumors.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"6 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01888-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanism of ferroptosis propagation is still unclear. Here our results indicate that the cells undergoing ferroptosis secrete Galectin-13, which binds to CD44 and inhibits the plasma membrane localization of SLC7A11 in neighboring cells, thereby accelerating neighboring cell death and promoting ferroptosis propagation. FOXK1 was phosphorylated by PKCβII and then facilitated the expression and secretion of Galectin-13 during ferroptotic cell death. Correlation analysis and functional analysis revealed that ferroptosis propagation ability was a previously unrecognized determinant of ferroptosis sensitivity in human cancer cells. A synthetic Galectin-13 mimetic peptide was shown to strongly enhance the sensitivity of tumors to the imidazole ketone erastin, radiotherapy and immunotherapy by boosting ferroptosis. In particular, cancer stem cells were vulnerable to the combination of Galectin-13 mimetic peptide and ferroptosis inducers. Our study provides new insights into ferroptosis propagation and highlights novel strategies for targeting ferroptosis to treat tumors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信