Bao Qiu, Yuhuan Zhou, Haoyan Liang, Minghao Zhang, Kexin Gu, Tao Zeng, Zhou Zhou, Wen Wen, Ping Miao, Lunhua He, Yinguo Xiao, Sven Burke, Zhaoping Liu, Ying Shirley Meng
{"title":"Negative thermal expansion and oxygen-redox electrochemistry","authors":"Bao Qiu, Yuhuan Zhou, Haoyan Liang, Minghao Zhang, Kexin Gu, Tao Zeng, Zhou Zhou, Wen Wen, Ping Miao, Lunhua He, Yinguo Xiao, Sven Burke, Zhaoping Liu, Ying Shirley Meng","doi":"10.1038/s41586-025-08765-x","DOIUrl":null,"url":null,"abstract":"<p>Structural disorder within materials gives rise to fascinating phenomena, attributed to the intricate interplay of their thermodynamic and electrochemical properties<sup>1,2</sup>. Oxygen-redox (OR) electrochemistry offers a breakthrough in capacity limits, while inducing structural disorder with reduced electrochemical reversibility<sup>3,4,5</sup>. The conventional explanation for the thermal expansion of solids relies on the Grüneisen relationship, linking the expansion coefficient to the anharmonicity of the crystal lattice<sup>6</sup>. However, this paradigm may not be applicable to OR materials due to the unexplored dynamic disorder–order transition in such systems<sup>7,8</sup>. Here we reveal the presence of negative thermal expansion with a large coefficient value of −14.4(2) × 10<sup>−6</sup> °C<sup>−1</sup> in OR active materials, attributing this to thermally driven disorder–order transitions. The modulation of OR behaviour not only enables precise control over the thermal expansion coefficient of materials, but also establishes a pragmatic framework for the design of functional materials with zero thermal expansion. Furthermore, we demonstrate that the reinstatement of structural disorder within the material can also be accomplished through the electrochemical driving force. By adjusting the cut-off voltages, evaluation of the discharge voltage change indicates a potential for nearly 100% structure recovery. This finding offers a pathway for restoring OR active materials to their pristine state through operando electrochemical processes, presenting a new mitigation strategy to address the persistent challenge of voltage decay.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"20 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08765-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Structural disorder within materials gives rise to fascinating phenomena, attributed to the intricate interplay of their thermodynamic and electrochemical properties1,2. Oxygen-redox (OR) electrochemistry offers a breakthrough in capacity limits, while inducing structural disorder with reduced electrochemical reversibility3,4,5. The conventional explanation for the thermal expansion of solids relies on the Grüneisen relationship, linking the expansion coefficient to the anharmonicity of the crystal lattice6. However, this paradigm may not be applicable to OR materials due to the unexplored dynamic disorder–order transition in such systems7,8. Here we reveal the presence of negative thermal expansion with a large coefficient value of −14.4(2) × 10−6 °C−1 in OR active materials, attributing this to thermally driven disorder–order transitions. The modulation of OR behaviour not only enables precise control over the thermal expansion coefficient of materials, but also establishes a pragmatic framework for the design of functional materials with zero thermal expansion. Furthermore, we demonstrate that the reinstatement of structural disorder within the material can also be accomplished through the electrochemical driving force. By adjusting the cut-off voltages, evaluation of the discharge voltage change indicates a potential for nearly 100% structure recovery. This finding offers a pathway for restoring OR active materials to their pristine state through operando electrochemical processes, presenting a new mitigation strategy to address the persistent challenge of voltage decay.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.