Josefin M. E. Forslund, Tran V. H. Nguyen, Vimal Parkash, Andreas Berner, Steffi Goffart, Jaakko L. O. Pohjoismäki, Paulina H. Wanrooij, Erik Johansson, Sjoerd Wanrooij
{"title":"The POLγ Y951N patient mutation disrupts the switch between DNA synthesis and proofreading, triggering mitochondrial DNA instability","authors":"Josefin M. E. Forslund, Tran V. H. Nguyen, Vimal Parkash, Andreas Berner, Steffi Goffart, Jaakko L. O. Pohjoismäki, Paulina H. Wanrooij, Erik Johansson, Sjoerd Wanrooij","doi":"10.1073/pnas.2417477122","DOIUrl":null,"url":null,"abstract":"Mitochondrial DNA (mtDNA) stability, essential for cellular energy production, relies on DNA polymerase gamma (POLγ). Here, we show that the POLγ Y951N disease-causing mutation induces replication stalling and severe mtDNA depletion. However, unlike other POLγ disease-causing mutations, Y951N does not directly impair exonuclease activity and only mildly affects polymerase activity. Instead, we found that Y951N compromises the enzyme’s ability to efficiently toggle between DNA synthesis and degradation, and is thus a patient-derived mutation with impaired polymerase-exonuclease switching. These findings provide insights into the intramolecular switch when POLγ proofreads the newly synthesized DNA strand and reveal a new mechanism for causing mitochondrial DNA instability.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"59 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2417477122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial DNA (mtDNA) stability, essential for cellular energy production, relies on DNA polymerase gamma (POLγ). Here, we show that the POLγ Y951N disease-causing mutation induces replication stalling and severe mtDNA depletion. However, unlike other POLγ disease-causing mutations, Y951N does not directly impair exonuclease activity and only mildly affects polymerase activity. Instead, we found that Y951N compromises the enzyme’s ability to efficiently toggle between DNA synthesis and degradation, and is thus a patient-derived mutation with impaired polymerase-exonuclease switching. These findings provide insights into the intramolecular switch when POLγ proofreads the newly synthesized DNA strand and reveal a new mechanism for causing mitochondrial DNA instability.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.