Guoming Zeng , Zilong Ma , Rui Zhang , Yu He , Yong Xiao , Da Sun , Xiaoling Lei
{"title":"Mechanism of electrochemical algal control and its effect on metabolic pathways of algal cells","authors":"Guoming Zeng , Zilong Ma , Rui Zhang , Yu He , Yong Xiao , Da Sun , Xiaoling Lei","doi":"10.1016/j.jhazmat.2025.138318","DOIUrl":null,"url":null,"abstract":"<div><div>Algal blooms cause significant ecological and economic issues. Electrochemical methods inhibit algal blooms effectively, but their effects on algal cell gene expression and metabolic pathways remain underexplored, requiring further mechanistic and ecological data to elucidate these mechanisms. This study revealed the control mechanism of electrochemical methods on <em>Microcystis aeruginosa</em> using flow cytometry, real-time PCR and untargeted metabolomics. Results indicate that electrochemical treatment induces oxidative stress, severely damaging algal cell membranes and impairing cell activity. Gene transcription analysis reveals that •OH oxidation leads to lipid peroxidation, damaging proteins, biological macromolecules, and the photosynthetic system. Metabolomics data show disruptions in amino acid, carbohydrate, and sphingolipid metabolism, affecting the tricarboxylic acid cycle, transporter proteins, and photosynthesis. These findings elucidate the mechanisms by which electrochemical methods control cyanobacterial blooms, offering theoretical and practical insights for effective management strategies.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"493 ","pages":"Article 138318"},"PeriodicalIF":12.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425012336","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Algal blooms cause significant ecological and economic issues. Electrochemical methods inhibit algal blooms effectively, but their effects on algal cell gene expression and metabolic pathways remain underexplored, requiring further mechanistic and ecological data to elucidate these mechanisms. This study revealed the control mechanism of electrochemical methods on Microcystis aeruginosa using flow cytometry, real-time PCR and untargeted metabolomics. Results indicate that electrochemical treatment induces oxidative stress, severely damaging algal cell membranes and impairing cell activity. Gene transcription analysis reveals that •OH oxidation leads to lipid peroxidation, damaging proteins, biological macromolecules, and the photosynthetic system. Metabolomics data show disruptions in amino acid, carbohydrate, and sphingolipid metabolism, affecting the tricarboxylic acid cycle, transporter proteins, and photosynthesis. These findings elucidate the mechanisms by which electrochemical methods control cyanobacterial blooms, offering theoretical and practical insights for effective management strategies.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.