{"title":"Fluorescence Damping as Primary Interference Mechanism of Humic Acids on qPCR Quantification of SARS-CoV-2 in Wastewater Surveillance","authors":"Min Ki Jeon, Tao Yan","doi":"10.1016/j.jhazmat.2025.138283","DOIUrl":null,"url":null,"abstract":"Real-time polymerase chain reaction (qPCR) is a widely used technology for the detection and quantification of nucleic acids in wastewater surveillance. However, the presence of inhibiting and/or interfering substances in wastewater samples, in particular humic acids, can significantly impact the accuracy and reliability of qPCR results. In this study, we investigated the impact of humic acids on qPCR reactions and determined the relative importance of various inhibition/interference mechanisms through spiked experiments and modeling. Our results showed that higher concentrations of humic acids led to increasing threshold cycle (<em>C</em><sub>T</sub>) values, which however cannot be adequately described by the polymerase inhibition model and the DNA template complexation model. Further inspection showed that humic acids caused fluorescence damping of the FAM reporter dye, resulting in an overall decrease in fluorescence intensity. Modeling of the fluorescence damping effect showed that the <em>C</em><sub>T</sub> values of qPCR reactions can be corrected based on end-point fluorescence reduction. Similar observations and corrections were also achieved when SARS-CoV-2 cDNA was spiked with an actual wastewater sludge cDNA.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"26 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138283","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time polymerase chain reaction (qPCR) is a widely used technology for the detection and quantification of nucleic acids in wastewater surveillance. However, the presence of inhibiting and/or interfering substances in wastewater samples, in particular humic acids, can significantly impact the accuracy and reliability of qPCR results. In this study, we investigated the impact of humic acids on qPCR reactions and determined the relative importance of various inhibition/interference mechanisms through spiked experiments and modeling. Our results showed that higher concentrations of humic acids led to increasing threshold cycle (CT) values, which however cannot be adequately described by the polymerase inhibition model and the DNA template complexation model. Further inspection showed that humic acids caused fluorescence damping of the FAM reporter dye, resulting in an overall decrease in fluorescence intensity. Modeling of the fluorescence damping effect showed that the CT values of qPCR reactions can be corrected based on end-point fluorescence reduction. Similar observations and corrections were also achieved when SARS-CoV-2 cDNA was spiked with an actual wastewater sludge cDNA.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.