Ran Wei, Tianshu Xu, Mingjiang Ma, Mohamed Elkabbash, Chunlei Guo
{"title":"Hybrid solar photovoltaic conversion and water desalination via quad-band fano-resonant optical coatings and superwicking cooling","authors":"Ran Wei, Tianshu Xu, Mingjiang Ma, Mohamed Elkabbash, Chunlei Guo","doi":"10.1038/s41377-025-01796-z","DOIUrl":null,"url":null,"abstract":"<p>Hybrid Photovoltaic/Thermal (HPT) systems simultaneously convert solar energy into electrical power and thermal energy. These systems are attractive as they enable the thermal management of PV cells to maintain optimal operating temperatures and maximize the overall solar energy conversion. Despite their advantages, HPT systems have been limited to storing solar energy in the form of heat or simple water/space heating, thus restricting the broader application scope of HPT systems, particularly in regions with abundant solar energy. Here, we introduce a device that expands the scope of HPT applications by realizing a hybrid PV/ water desalination system, achieved through the integration of a Fano-resonant optical coating (FROC) onto a silicon substrate, which is turned superwicking via femtosecond laser surface patterning. This configuration allows a single-junction amorphous silicon solar cell to operate under higher solar concentrations with much less heat conversion, achieving a temperature reduction of 101 °C and an efficiency improvement of 335.7% compared to a standalone photovoltaic system under the solar concentration of 5. At the same time, the interfacial water desalination achieves a 2 <span>\\({kg}{m}^{-2}{h}^{-1}\\)</span> high evaporation rate. Over a 12-hour cycle, our HPT system showed a consistent performance, demonstrating a combined solar conversion efficiency of 79.6%. The demonstrated superwicking-FROC will pave the way for widespread adoption of HPT systems particularly in sunny coastal regions.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"17 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01796-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid Photovoltaic/Thermal (HPT) systems simultaneously convert solar energy into electrical power and thermal energy. These systems are attractive as they enable the thermal management of PV cells to maintain optimal operating temperatures and maximize the overall solar energy conversion. Despite their advantages, HPT systems have been limited to storing solar energy in the form of heat or simple water/space heating, thus restricting the broader application scope of HPT systems, particularly in regions with abundant solar energy. Here, we introduce a device that expands the scope of HPT applications by realizing a hybrid PV/ water desalination system, achieved through the integration of a Fano-resonant optical coating (FROC) onto a silicon substrate, which is turned superwicking via femtosecond laser surface patterning. This configuration allows a single-junction amorphous silicon solar cell to operate under higher solar concentrations with much less heat conversion, achieving a temperature reduction of 101 °C and an efficiency improvement of 335.7% compared to a standalone photovoltaic system under the solar concentration of 5. At the same time, the interfacial water desalination achieves a 2 \({kg}{m}^{-2}{h}^{-1}\) high evaporation rate. Over a 12-hour cycle, our HPT system showed a consistent performance, demonstrating a combined solar conversion efficiency of 79.6%. The demonstrated superwicking-FROC will pave the way for widespread adoption of HPT systems particularly in sunny coastal regions.
混合光电/热能(HPT)系统同时将太阳能转化为电能和热能。这些系统很有吸引力,因为它们使光伏电池的热管理能够保持最佳的工作温度,并最大限度地提高整体太阳能转换。尽管HPT系统有其优势,但其局限于以热能或简单的水/空间加热的形式存储太阳能,从而限制了HPT系统更广泛的应用范围,特别是在太阳能资源丰富的地区。在这里,我们介绍了一种通过将fano谐振光学涂层(FROC)集成到硅衬底上实现混合光伏/海水淡化系统的器件,该器件通过飞秒激光表面图像化变成超芯,从而扩大了HPT应用范围。这种结构允许单结非晶硅太阳能电池在更高的太阳浓度下工作,热量转换少得多,温度降低101°C,效率提高335.7% compared to a standalone photovoltaic system under the solar concentration of 5. At the same time, the interfacial water desalination achieves a 2 \({kg}{m}^{-2}{h}^{-1}\) high evaporation rate. Over a 12-hour cycle, our HPT system showed a consistent performance, demonstrating a combined solar conversion efficiency of 79.6%. The demonstrated superwicking-FROC will pave the way for widespread adoption of HPT systems particularly in sunny coastal regions.