Predicting plant trait dynamics from genetic markers

IF 15.8 1区 生物学 Q1 PLANT SCIENCES
David Hobby, Hao Tong, Marc Heuermann, Alain J. Mbebi, Roosa A. E. Laitinen, Matteo Dell’Acqua, Thomas Altmann, Zoran Nikoloski
{"title":"Predicting plant trait dynamics from genetic markers","authors":"David Hobby, Hao Tong, Marc Heuermann, Alain J. Mbebi, Roosa A. E. Laitinen, Matteo Dell’Acqua, Thomas Altmann, Zoran Nikoloski","doi":"10.1038/s41477-025-01986-y","DOIUrl":null,"url":null,"abstract":"<p>Molecular and physiological changes across crop developmental stages shape the plant phenome and render its prediction from genetic markers challenging. Here we present dynamicGP, an efficient computational approach that combines genomic prediction with dynamic mode decomposition to characterize the temporal changes and to predict genotype-specific dynamics for multiple morphometric, geometric and colourimetric traits scored by high-throughput phenotyping. Using genetic markers and data from high-throughput phenotyping of a maize multiparent advanced generation inter-cross population and an <i>Arabidopsis thaliana</i> diversity panel, we show that dynamicGP outperforms a baseline genomic prediction approach for the multiple traits. We demonstrate that the developmental dynamics of traits whose heritability varies less over time can be predicted with higher accuracy. The approach paves the way for interrogating and integrating the dynamical interactions between genotype and environment over plant development to improve the prediction accuracy of agronomically relevant traits.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"3 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-025-01986-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular and physiological changes across crop developmental stages shape the plant phenome and render its prediction from genetic markers challenging. Here we present dynamicGP, an efficient computational approach that combines genomic prediction with dynamic mode decomposition to characterize the temporal changes and to predict genotype-specific dynamics for multiple morphometric, geometric and colourimetric traits scored by high-throughput phenotyping. Using genetic markers and data from high-throughput phenotyping of a maize multiparent advanced generation inter-cross population and an Arabidopsis thaliana diversity panel, we show that dynamicGP outperforms a baseline genomic prediction approach for the multiple traits. We demonstrate that the developmental dynamics of traits whose heritability varies less over time can be predicted with higher accuracy. The approach paves the way for interrogating and integrating the dynamical interactions between genotype and environment over plant development to improve the prediction accuracy of agronomically relevant traits.

Abstract Image

从遗传标记预测植物性状动态
作物发育阶段的分子和生理变化塑造了植物表型,并使其从遗传标记预测具有挑战性。在这里,我们提出了dynamicGP,这是一种有效的计算方法,将基因组预测与动态模式分解相结合,以表征时间变化,并预测通过高通量表型评分的多种形态、几何和颜色特征的基因型特异性动态。利用玉米多亲本高级代杂交群体和拟南芥多样性面板的遗传标记和高通量表型分析数据,我们表明动态gp优于多性状的基线基因组预测方法。我们证明了遗传力随时间变化较小的性状的发育动态可以以更高的精度预测。该方法为探究和整合基因型与环境在植物发育过程中的动态相互作用,提高农艺相关性状的预测精度铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信