Single-cell sequencing systematically analyzed the mechanism of Emdogain on the restoration of delayed replantation periodontal membrane

IF 10.8 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Yanyi Liu, Yuhao Peng, Lanhui Chen, Yangfan Xiang, Ximu Zhang, Jinlin Song
{"title":"Single-cell sequencing systematically analyzed the mechanism of Emdogain on the restoration of delayed replantation periodontal membrane","authors":"Yanyi Liu, Yuhao Peng, Lanhui Chen, Yangfan Xiang, Ximu Zhang, Jinlin Song","doi":"10.1038/s41368-024-00345-5","DOIUrl":null,"url":null,"abstract":"<p>The repair of the periodontal membrane is essential for the successful management of periodontal disease and dental trauma. Emdogain<sup>®</sup> (EMD) is widely used in periodontal therapy due to its ability to promote repair. Despite substantial research, the cellular and molecular mechanisms underlying EMD’s effects, particularly at the single-cell resolution, remain incompletely understood. This study established a delayed tooth replantation model in rats to investigate these aspects. Tooth loss rate and degree of loosening were evaluated at 4 and 8 weeks. Micro-CT, HE staining, TRAP staining, and immunofluorescence staining were evaluated to assess EMD’s efficacy. Single-cell sequencing analyses generated single-cell maps that explored enrichment pathways, cell communication, and potential repair mechanisms. Findings indicated that EMD could reduce the rate of tooth loss, promote periodontal membrane repair, and reduce root and bone resorption. Single-cell analysis revealed that EMD promotes the importance of <i>Vtn+</i> fibroblasts, enhancing matrix and tissue regeneration functions. Additionally, EMD stimulated osteogenic pathways, reduced osteoclastic activity, and promoted angiogenesis-related pathways, particularly bone-related H-type vessel expression in endothelial cells. Gene modules associated with angiogenesis, osteogenesis, and odontoblast differentiation were identified, suggesting EMD might facilitate osteogenesis and odontoblast differentiation by upregulating endothelium-related genes. Immune cell analysis indicated that EMD did not elicit a significant immune response. Cell communication analysis suggested that EMD fostered pro-regenerative networks driven by interactions between mesenchymal stem cells, fibroblasts, and endothelial cells. In conclusion, EMD proves to be an effective root surface therapy agent that supports the restoration of delayed replantation teeth.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"5 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41368-024-00345-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

The repair of the periodontal membrane is essential for the successful management of periodontal disease and dental trauma. Emdogain® (EMD) is widely used in periodontal therapy due to its ability to promote repair. Despite substantial research, the cellular and molecular mechanisms underlying EMD’s effects, particularly at the single-cell resolution, remain incompletely understood. This study established a delayed tooth replantation model in rats to investigate these aspects. Tooth loss rate and degree of loosening were evaluated at 4 and 8 weeks. Micro-CT, HE staining, TRAP staining, and immunofluorescence staining were evaluated to assess EMD’s efficacy. Single-cell sequencing analyses generated single-cell maps that explored enrichment pathways, cell communication, and potential repair mechanisms. Findings indicated that EMD could reduce the rate of tooth loss, promote periodontal membrane repair, and reduce root and bone resorption. Single-cell analysis revealed that EMD promotes the importance of Vtn+ fibroblasts, enhancing matrix and tissue regeneration functions. Additionally, EMD stimulated osteogenic pathways, reduced osteoclastic activity, and promoted angiogenesis-related pathways, particularly bone-related H-type vessel expression in endothelial cells. Gene modules associated with angiogenesis, osteogenesis, and odontoblast differentiation were identified, suggesting EMD might facilitate osteogenesis and odontoblast differentiation by upregulating endothelium-related genes. Immune cell analysis indicated that EMD did not elicit a significant immune response. Cell communication analysis suggested that EMD fostered pro-regenerative networks driven by interactions between mesenchymal stem cells, fibroblasts, and endothelial cells. In conclusion, EMD proves to be an effective root surface therapy agent that supports the restoration of delayed replantation teeth.

Abstract Image

单细胞测序系统分析 Emdogain 对延迟再植牙周膜修复的作用机制
牙周膜的修复对于牙周疾病和牙外伤的成功治疗至关重要。Emdogain®(EMD)因其促进牙周修复的能力而被广泛应用于牙周治疗。尽管进行了大量的研究,但EMD效应的细胞和分子机制,特别是在单细胞分辨率上,仍然不完全清楚。本研究建立大鼠延迟牙再植模型,对这些方面进行探讨。在4周和8周时评估牙齿脱落率和松动程度。采用Micro-CT、HE染色、TRAP染色、免疫荧光染色评价EMD的疗效。单细胞测序分析生成单细胞图谱,探索富集途径、细胞通讯和潜在修复机制。结果表明,EMD可降低牙齿脱落率,促进牙周膜修复,减少根骨吸收。单细胞分析显示,EMD促进了Vtn+成纤维细胞的重要性,增强了基质和组织再生功能。此外,EMD刺激成骨通路,降低破骨细胞活性,促进血管生成相关通路,特别是内皮细胞中与骨相关的h型血管表达。发现与血管生成、成骨和成牙细胞分化相关的基因模块,提示EMD可能通过上调内皮相关基因促进成骨和成牙细胞分化。免疫细胞分析表明,EMD没有引起显著的免疫反应。细胞通讯分析表明,EMD促进了由间充质干细胞、成纤维细胞和内皮细胞之间的相互作用驱动的促再生网络。综上所述,EMD是一种支持延迟再植牙修复的有效根面治疗剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Oral Science
International Journal of Oral Science DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
31.80
自引率
1.30%
发文量
53
审稿时长
>12 weeks
期刊介绍: The International Journal of Oral Science covers various aspects of oral science and interdisciplinary fields, encompassing basic, applied, and clinical research. Topics include, but are not limited to: Oral microbiology Oral and maxillofacial oncology Cariology Oral inflammation and infection Dental stem cells and regenerative medicine Craniofacial surgery Dental material Oral biomechanics Oral, dental, and maxillofacial genetic and developmental diseases Craniofacial bone research Craniofacial-related biomaterials Temporomandibular joint disorder and osteoarthritis The journal publishes peer-reviewed Articles presenting new research results and Review Articles offering concise summaries of specific areas in oral science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信