Dimethyl fumarate modulates M1/M2 macrophage polarization to ameliorate periodontal destruction by increasing TUFM-mediated mitophagy

IF 10.8 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Liang Chen, Pengxiao Hu, Xinhua Hong, Bin Li, Yifan Ping, ShuoMin Chen, Tianle Jiang, Haofu Jiang, Yixin Mao, Yang Chen, Zhongchen Song, Zhou Ye, Xiaoyu Sun, Shufan Zhao, Shengbin Huang
{"title":"Dimethyl fumarate modulates M1/M2 macrophage polarization to ameliorate periodontal destruction by increasing TUFM-mediated mitophagy","authors":"Liang Chen, Pengxiao Hu, Xinhua Hong, Bin Li, Yifan Ping, ShuoMin Chen, Tianle Jiang, Haofu Jiang, Yixin Mao, Yang Chen, Zhongchen Song, Zhou Ye, Xiaoyu Sun, Shufan Zhao, Shengbin Huang","doi":"10.1038/s41368-025-00360-0","DOIUrl":null,"url":null,"abstract":"<p>Periodontitis is a common oral disease characterized by progressive alveolar bone resorption and inflammation of the periodontal tissues. Dimethyl fumarate (DMF) has been used in the treatment of various immune-inflammatory diseases due to its excellent anti-inflammatory and antioxidant functions. Here, we investigated for the first time the therapeutic effect of DMF on periodontitis. In vivo studies showed that DMF significantly inhibited periodontal destruction, enhanced mitophagy, and decreased the M1/M2 macrophage ratio. In vitro studies showed that DMF inhibited macrophage polarization toward M1 macrophages and promoted polarization toward M2 macrophages, with improved mitochondrial function, inhibited oxidative stress, and increased mitophagy in RAW 264.7 cells. Furthermore, DMF increased intracellular mitochondrial Tu translation elongation factor (TUFM) levels to maintain mitochondrial homeostasis, promoted mitophagy, and modulated macrophage polarization, whereas TUFM knockdown decreased the protective effect of DMF. Finally, mechanistic studies showed that DMF increased intracellular TUFM levels by protecting TUFM from degradation via the ubiquitin-proteasomal degradation pathway. Our results demonstrate for the first time that DMF protects mitochondrial function and inhibits oxidative stress through TUFM-mediated mitophagy in macrophages, resulting in a shift in the balance of macrophage polarization, thereby attenuating periodontitis. Importantly, this study provides new insights into the prevention of periodontitis.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"22 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41368-025-00360-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Periodontitis is a common oral disease characterized by progressive alveolar bone resorption and inflammation of the periodontal tissues. Dimethyl fumarate (DMF) has been used in the treatment of various immune-inflammatory diseases due to its excellent anti-inflammatory and antioxidant functions. Here, we investigated for the first time the therapeutic effect of DMF on periodontitis. In vivo studies showed that DMF significantly inhibited periodontal destruction, enhanced mitophagy, and decreased the M1/M2 macrophage ratio. In vitro studies showed that DMF inhibited macrophage polarization toward M1 macrophages and promoted polarization toward M2 macrophages, with improved mitochondrial function, inhibited oxidative stress, and increased mitophagy in RAW 264.7 cells. Furthermore, DMF increased intracellular mitochondrial Tu translation elongation factor (TUFM) levels to maintain mitochondrial homeostasis, promoted mitophagy, and modulated macrophage polarization, whereas TUFM knockdown decreased the protective effect of DMF. Finally, mechanistic studies showed that DMF increased intracellular TUFM levels by protecting TUFM from degradation via the ubiquitin-proteasomal degradation pathway. Our results demonstrate for the first time that DMF protects mitochondrial function and inhibits oxidative stress through TUFM-mediated mitophagy in macrophages, resulting in a shift in the balance of macrophage polarization, thereby attenuating periodontitis. Importantly, this study provides new insights into the prevention of periodontitis.

Abstract Image

富马酸二甲酯调节M1/M2巨噬细胞极化,通过增加tufm介导的线粒体自噬来改善牙周破坏
牙周炎是一种常见的口腔疾病,其特征是进行性牙槽骨吸收和牙周组织炎症。富马酸二甲酯(DMF)具有良好的抗炎和抗氧化功能,已被用于治疗各种免疫炎性疾病。本文首次探讨了DMF对牙周炎的治疗效果。体内研究表明,DMF显著抑制牙周破坏,增强有丝分裂,降低M1/M2巨噬细胞比例。体外研究表明,DMF抑制巨噬细胞向M1巨噬细胞极化,促进向M2巨噬细胞极化,改善RAW 264.7细胞线粒体功能,抑制氧化应激,增加线粒体自噬。此外,DMF增加细胞内线粒体Tu翻译延伸因子(TUFM)水平以维持线粒体稳态,促进线粒体自噬,调节巨噬细胞极化,而TUFM敲低则降低DMF的保护作用。最后,机制研究表明,DMF通过泛素-蛋白酶体降解途径保护TUFM免受降解,从而增加细胞内TUFM水平。我们的研究结果首次证明,DMF通过tufm介导的巨噬细胞线粒体自噬来保护线粒体功能并抑制氧化应激,导致巨噬细胞极化平衡的改变,从而减轻牙周炎。重要的是,这项研究为牙周炎的预防提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Oral Science
International Journal of Oral Science DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
31.80
自引率
1.30%
发文量
53
审稿时长
>12 weeks
期刊介绍: The International Journal of Oral Science covers various aspects of oral science and interdisciplinary fields, encompassing basic, applied, and clinical research. Topics include, but are not limited to: Oral microbiology Oral and maxillofacial oncology Cariology Oral inflammation and infection Dental stem cells and regenerative medicine Craniofacial surgery Dental material Oral biomechanics Oral, dental, and maxillofacial genetic and developmental diseases Craniofacial bone research Craniofacial-related biomaterials Temporomandibular joint disorder and osteoarthritis The journal publishes peer-reviewed Articles presenting new research results and Review Articles offering concise summaries of specific areas in oral science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信