Fibroblast derived C3 promotes the progression of experimental periodontitis through macrophage M1 polarization and osteoclast differentiation

IF 10.8 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Feilong Ren, Shize Zheng, Huanyu Luo, Xiaoyi Yu, Xianjing Li, Shaoyi Song, Wenhuan Bu, Hongchen Sun
{"title":"Fibroblast derived C3 promotes the progression of experimental periodontitis through macrophage M1 polarization and osteoclast differentiation","authors":"Feilong Ren, Shize Zheng, Huanyu Luo, Xiaoyi Yu, Xianjing Li, Shaoyi Song, Wenhuan Bu, Hongchen Sun","doi":"10.1038/s41368-025-00361-z","DOIUrl":null,"url":null,"abstract":"<p>Complement C3 plays a critical role in periodontitis. However, its source, role and underlying mechanisms remain unclear. In our study, by analyzing single-cell sequencing data from mouse model of periodontitis, we identified that C3 is primarily derived from periodontal fibroblasts. Subsequently, we demonstrated that C3a has a detrimental effect in ligature-induced periodontitis. <i>C3ar</i><sup><i>−/−</i></sup> mice exhibited significantly less destruction of periodontal support tissues compared to wild-type mice, characterized by mild gingival tissue damage and reduced alveolar bone loss. This reduction was associated with decreased production of pro-inflammatory mediators and reduced osteoclast infiltration in the periodontal tissues. Mechanistic studies suggested that C3a could promote macrophage polarization and osteoclast differentiation. Finally, by analyzing single-cell sequencing data from the periodontal tissues of patients with periodontitis, we found that the results observed in mice were consistent with human data. Therefore, our findings clearly demonstrate the destructive role of fibroblast-derived C3 in ligature-induced periodontitis, driven by macrophage M1 polarization and osteoclast differentiation. These data strongly support the feasibility of C3a-targeted interventions for the treatment of human periodontitis.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"2 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41368-025-00361-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Complement C3 plays a critical role in periodontitis. However, its source, role and underlying mechanisms remain unclear. In our study, by analyzing single-cell sequencing data from mouse model of periodontitis, we identified that C3 is primarily derived from periodontal fibroblasts. Subsequently, we demonstrated that C3a has a detrimental effect in ligature-induced periodontitis. C3ar−/− mice exhibited significantly less destruction of periodontal support tissues compared to wild-type mice, characterized by mild gingival tissue damage and reduced alveolar bone loss. This reduction was associated with decreased production of pro-inflammatory mediators and reduced osteoclast infiltration in the periodontal tissues. Mechanistic studies suggested that C3a could promote macrophage polarization and osteoclast differentiation. Finally, by analyzing single-cell sequencing data from the periodontal tissues of patients with periodontitis, we found that the results observed in mice were consistent with human data. Therefore, our findings clearly demonstrate the destructive role of fibroblast-derived C3 in ligature-induced periodontitis, driven by macrophage M1 polarization and osteoclast differentiation. These data strongly support the feasibility of C3a-targeted interventions for the treatment of human periodontitis.

Abstract Image

成纤维细胞来源的C3通过巨噬细胞M1极化和破骨细胞分化促进实验性牙周炎的进展
补体C3在牙周炎中起关键作用。然而,其来源、作用和潜在机制尚不清楚。在我们的研究中,通过分析小鼠牙周炎模型的单细胞测序数据,我们发现C3主要来源于牙周成纤维细胞。随后,我们证明了C3a在结扎性牙周炎中具有有害作用。与野生型小鼠相比,C3ar - / -小鼠对牙周支持组织的破坏明显减少,其特征是轻微的牙龈组织损伤和减少的牙槽骨丢失。这种减少与促炎介质的产生减少和牙周组织中破骨细胞浸润减少有关。机制研究表明,C3a可促进巨噬细胞极化和破骨细胞分化。最后,通过分析来自牙周炎患者牙周组织的单细胞测序数据,我们发现在小鼠中观察到的结果与人类数据一致。因此,我们的研究结果清楚地表明,在巨噬细胞M1极化和破骨细胞分化的驱动下,成纤维细胞来源的C3在结扎诱导的牙周炎中具有破坏性作用。这些数据有力地支持了c3a靶向干预治疗人类牙周炎的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Oral Science
International Journal of Oral Science DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
31.80
自引率
1.30%
发文量
53
审稿时长
>12 weeks
期刊介绍: The International Journal of Oral Science covers various aspects of oral science and interdisciplinary fields, encompassing basic, applied, and clinical research. Topics include, but are not limited to: Oral microbiology Oral and maxillofacial oncology Cariology Oral inflammation and infection Dental stem cells and regenerative medicine Craniofacial surgery Dental material Oral biomechanics Oral, dental, and maxillofacial genetic and developmental diseases Craniofacial bone research Craniofacial-related biomaterials Temporomandibular joint disorder and osteoarthritis The journal publishes peer-reviewed Articles presenting new research results and Review Articles offering concise summaries of specific areas in oral science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信